

(University of Choice)

# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

#### MAIN CAMPUS

# UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

#### FIFTH YEAR FIRST SEMESTER EXAMINATIONS

# FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: CSE 551

COURSE TITLE: WATER RESOURCES ENGINEERING

DATE: FRIDAY 24<sup>TH</sup> JANUARY 2020 TIME: 12.00 – 2.00 PM

#### **INSTRUCTIONS:**

- 1. This paper contains FOUR questions
- 2. Answer question ONE (compulsory) and any other TWO question
- 3. Marks for each question are indicated in the parenthesis.
- 4. Examination duration is 2 Hour

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

## QUESTION 1 (30 Marks)

- (a) In your own opinion briefly discuss how management of Water Resources for drought conditions can be achieved. [15 Marks]
- (b) Two types of structural alternatives are proposed for flood control: upstream flood storage reservoir with a design life of 65 yrs and channel protection through dyke formation with a design life of 40 years. The Cost and benefits are tabulated below. Given the interest, depreciation and administrative cost to be 15%, 2.5% and 0.7% of the Capital cost. Which of the two plans is more economical using the Cost-Benefit analysis method
  [15 Marks]

| S/No. | ITEMS                                          | Reservoir                  | Channel                    |
|-------|------------------------------------------------|----------------------------|----------------------------|
|       |                                                | Cost(Ksh.)×10 <sup>7</sup> | Cost(Ksh.)×10 <sup>7</sup> |
| 1     | Preliminaries (including designs)              | 3.5                        | 2                          |
| 2     | Construction site offices and other buildings  | 2                          | 1                          |
| 3     | Tools and Plants                               | 3                          | 1                          |
|       | Earth works (river diversions, excavations,    |                            |                            |
| 4     | etc)                                           | 9                          | 3                          |
| 5     | Structural Work                                | 90                         | 20                         |
| 6     | Canal lining and outlet formations             | 2                          | 8                          |
| 7     | Embankment formations                          | 22                         | 14                         |
| 8     | Environmental and Ecology                      | 3                          | 2.5                        |
| 9     | Communication                                  | 0.8                        | 0.7                        |
| 10    | Maintenance                                    | 16                         | 8.5                        |
| 11    | Miscellaneous expenses                         | 3                          | 2                          |
| 12    | Annual Irrigation Benefits                     | 40.5                       | 18.5                       |
|       | Annual flood protection benefits (Human,       |                            |                            |
| 13    | Structural)                                    | 24.5                       | 15.5                       |
|       | Recoveries (Buildings, tools, plants and       |                            |                            |
| 14    | Vehicles)                                      | 1.5                        | 0.5                        |
|       | Capital Value of land for offices after end of |                            |                            |
| 15    | project                                        | 1                          | 0.5                        |

# QUESTION 2 (20 Marks)

- (a) Differentiate between
  - i. Net water supply and stable water supply

[4 Marks]

ii. Gravity dams and Earth Dams

[4 Marks]

(b) An attempt is made to supply water from a river of discharge 3.5m<sup>3</sup>/s for irrigation scheme. A total flow of 0.6m<sup>3</sup>/s of water is supposed to be diverted by a broad

crest weir with an upstream square corner and spanning the full width of a small stream of 4.5m. The proposed crest length is 2.4 and the crest elevation is 2.2m above the bed. Calculate the water surface elevation up-stream of the weir. Assume the initial Cd=0.545 [12 Marks]

## **QUESTION 3 (20 Marks)**

- (a) Discuss the significance of studying Engineering economics [2Marks]
- (b) Discuss the essence of Water Resources projects Planning and the FIVE stages involved [18 marks]

## **QUESTION 4 (20 Marks)**

- (a) Briefly discuss the causes and consequences of Groundwater overdraft [10 Marks]]
- (b) Given the climate change and erratic weather pattern, it has become absolutely necessary to practice Rain water harvesting as means of addressing SDG goal No.1,2, 3 and 6, especially in ASAL areas in Africa. Discuss.

#### Some Useful Formula:

$$C_d = 0.028 \bigg(\frac{H_1}{B_W}\bigg) + 0.521 \ \text{for broad crested weir, and} \ C_d = 0.120 \bigg(\frac{H_1}{B_W}\bigg) + 0.492 \ \text{for narrow-crested weir}$$
 crested weir