(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2015/2016 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DIPLOMA IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: DCE 052

COURSE TITLE: APPLIED MECHANICS

DATE: MONDAY 7TH DECEMBER 2015 TIME: 9.00 - 11.00 PM

INSTRUCTIONS:

- 1. This paper consists of SIX Questions
- 2. Answer Question One and any other FOUR Questions
- 3. Examination duration is **2 Hours**

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

DCE 058: MATHEMATICS II

QUESTION ONE (30MKS)

.....

A) Integrate the following expressions with respect to

I, $\frac{1}{2x}$ Ii e^{4-5x} Type equation here. iii, $\frac{3x}{(x-1)(x-2)}$ iv, $\frac{1}{3x+1}$

Find the derivatives of the following from first principles.

I,
$$\cos x$$

Ii, $2\sin x - 3\cos x$
Iii, $\log x$ iv , $2inx$
C, If $f(x) = \frac{3}{4} - x$ and $g(x) =$
 $\frac{1}{x}find$ $i, (fog)(x)$ $ii, (gof)(x)$
d) Given that $\log a^{(m)}=r$ and $\log a^{1/n}=s$ show that $m=n a^{r+s}$
ii,Express $\frac{2}{(x+1)(x^2-x-1)}$ into partial fractions

iii, if $\log_{10}2=a$ show that $\log_8 5 = \frac{(1-a)}{3a}$

QUESTION TWO (10MKS)

Expand simplify the following function and write down its derivative

$$\sin\left(x+\frac{\pi}{2}\right)$$

QUESTION THREE (10MKS)

Use Simpson's rule to find an approximate value for $\int_0^n \sqrt{\sin\theta} \delta = \theta$

QUESTION FOUR (10MKS)

The area enclosed by the curve $y=4x-x^2$ and the line y=3 is rotated about the line y=3. Find the volume of the solid generated.

QUESTION FIVE (10MKS)

I, A spherical balloon is blown up so that its volume increases at aco0nstant rate of $2\text{cm}^{3/8}$. Find the rate of increase of the radius when the volume of the balloon is 50cm^3 . Ii, A vessel containing water is in the form of an inverted hollow cone with a semi vertical angle of 30^0 . There is a small hole at the vertex of the core and the water is running out at arate of $3\text{cm}^{3/f}$ ind the rate at which the surface area in contact with the water is changing when there are $81\pi\text{cm}^3$ of water remaining in the cone.

~

QUESTION SIX (10MKS)

Differentiate

I,
$$e^{3x}$$

ii, $3\sin(e^x)$
iii, $\sin 2x$
Iv, $\frac{1}{x^{2+1}}$
v. $\frac{x-1}{x\sqrt{x^{2+1}}}$