

(The University of Choice)

MASINDEMULIROUNIVERSITY OF SCIENCE AND TECHNOLOGY

KISUMU CITY CAMPUS

EXAMINATIONS 2015/2016 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR DEGREE IN BACHELOR OF COMMERCE

COURSE CODE:

BCB 206

COURSE TITLE:

MANAGEMENT DECISION MODELS

DATE: SEPTEMBER 2016

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES

Answer question One and any other Two questions

1 (a) Define Linear Programming and state its assumptions (5 marks).

- (b) State the advantages of Linear Programming (5 marks).
- (c) A firm produces two products X and Y with a contribution of \$8 and \$10 per unit respectively. Production data per unit is shown below:

	Labor hours	Material A	Material B
X	3	4	6
Υ	5	2	8
Total Available	500	350	800

Required:

- (a) Formulate a Linear Programming Model in the standardized manner (5 marks).
- (b) Use Graphical Method to solve the model, hence find the number of product X and product Y that would optimize contribution, hence find the optimum contribution (10 marks).
- (c) Calculate the shadow prices of the binding constraints and give your comments (5 marks).
- 2. The table below shows a transportation problem with cost coefficients.

FROM TQ	1	2	3	Supply
Α	67	42	51	250
В	61	24	39	400
С	29	47	60	300
D	43	31	42	200
Demand	400	150	600	1150

Required:

- (a) Find an initial solution using the least cost method (10 marks).
- (b) Find the optimal solution using the stepping stone method (10 marks).
- 3. A project has the following activities and characteristics:

Activity	Preceding Activity	Time Estimates in Weeks		
		Optimistic	Most Likely	Pessimistic
Α	None	4	7	16
В	None	1	5	15
С	Α	6	12	30
D	Α	2	5	8
Е	С	5	11	17
F	D	3	6	15
G	В	3	9	27
Н	E,F	1	4	7
1	G	4	19	28
J	I,H	3	4	5

Required:

- (a) Draw the PERT Network diagram and identify the Critical Path (10 marks).
- (b) Determine the mean project completion time (5 marks).
- (c) What is the probability that the project is completed in 36 weeks (5 marks).
- 4. (a)From the table below, use the coefficient of optimism (C) to determine the best course of action given that the degree of optimism, $\beta = 0.75$ (15 marks).

	State of Nature			
Course of Action	S1	S2	S3	S4
A1	12	34	19	20
A2	-24	17	15	57
A3	10	35	38	23
A4	15	0	45	47
A5	25	-27	52	33

(b) Given the payoff matrix below for Firm A and Firm B's strategies.

Firm A	Firm B			
	B1	В2	В3	B4
A1	1	-3	2	3
A2	5	6	4	5
А3	-2	-1	0	1

- (i) Determine the best strategy for firm A, giving appropriate reasons (3 marks).
- (ii) State the saddle point (1 mark).
- (iii) What kind of game is this? (1 mark).
- 5. (a) What do you understand by queuing analysis? (2 marks).
 - (b)Describe at least three structures of the queuing system, stating clearly how they are being applied in specific institutions (6 marks).
 - (c) Describe the unusual customer behavior in queues (6 marks).
 - (d) Customers arrive randomly at a department store at an average rate of 3.4 per minute. Assuming the customer arrivals form the Poisson distribution, calculate the probability that:
 - (i) No customer arrives in any given minute (2 marks).
 - (ii) Exactly one customer arrives in any given minute (2 marks).
 - (iii)Two or more customers arrive in any given minute (2 marks).