

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE **BACHELOR OF SCIENCE IN PHYSICS**

COURSE CODE:

SPH 343

COURSE TITLE:

ELECTRONIC DEVICES AND CIRCUITRY

DATE: TUESDAY 26TH APRIL,2022

TIME: 12:00 PM - 2:00 PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours

Answer question ONE and any TWO of the remaining.

Symbols used bear the usual meaning.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages, Please Turn Over.

QUESTION ONE (30 MARKS)

- a) State two main disadvantages of discrete circuits (2marks)
- b) Explain the following processes in the production of monolithic integrated circuits
 - i) Etching (2 marks)
 - ii) Packaging (2 marks)
- c) State the four basic types of constructions that are employed in the manufacture of Integrated circuits. (4 marks)
- d) Show that gain of a non-inverting ideal operational amplifier is given by (4 marks)

$$A = 1 + \frac{R_2}{R_1}$$

where R_2 is the feedback resistor and R_1 is the input resistor of the Op-Amp.

- e) A differential amplifier has an open circuit gain of 100. Determine the output voltage if the input signals are 3.15V and 3.25V. (2 marks)
- f) Outline four advantages of using integrated circuits over discrete circuits in electronic designs or constructions. (4 marks)
- g) Figure 1 shows an inverting operational amplifier. Determine the closed loop voltage gain and the maximum operating frequency if the slew rate is $0.5V/\mu s$. (6 marks)

Figure 1

h) A differential amplifier has an output of 1.0V and with a differential input of 10.0mV and an output of 5.0mV with a common mode input of 10.0mV. Determine the Common mode rejection ration (CMRR) in dB. (4 marks)

QUESTION TWO (20 MARKS)

- a) Differentiate between common mode and differential mode signals (2 marks)
- b) Outline four important characteristics of an ideal operational amplifier (4 marks)
- c) Show that the voltage gain of a real inverting operational amplifier is given by

$$A = -\frac{R_2}{R_1} \frac{1}{1 + \frac{1}{A} \left(1 + \frac{R_2}{R_1}\right)}$$

where R_2 is the feedback resistor and R_1 is the input resistor of the Operational amplifier circuit. (10 marks)

d) State the conditions under which the summing amplifier will act as an averaging amplifier. (4 marks)

QUESTION THREE (20 MARKS)

- a) Show that the effect of negative feedback on a voltage follower circuit is to increase the input impedance of the circuit by a factor (1+A₀) where A₀ is the open loop gain of the Operational amplifier.
 (4 marks)
- b) Two voltages of +0.6V and -1.4V are applied to the two input resistors of a summing amplifier. The respective input resistors are $400K\Omega$ and $100K\Omega$ and the feedback resistor is $200K\Omega$. Determine the output voltage of the amplifier. (4 marks)
- c) A three stage Op-amp circuit is required to provide voltage gains of +10, -18 and -27. If all the three stages use 270K Ω feedback resistors,
 - i) Draw the circuit of the amplifier clearly showing the connection of the input signal and the inter-stage connections. (4 marks)
 - ii) Compute the output volage for an input voltage of 150μV.

(8 marks)

QUESTION FOUR (20 MARKS)

a) Compute the output voltage for a differentiator circuit whose input changes from 0 to 5V in 0.1ms if the input capacitance is $0.1\mu F$ and the feedback resistance is $1K\Omega$.

(6 marks)

b) Show that the voltage of an integrator circuit is given by

$$V_o = -\frac{1}{RC} \int_0^t V_i dt$$

where R is the input resistance and C is the feedback capacitor.

(10 marks)

c) State the Barkhausen criterion for sustained oscillations in electronic circuits

(2 marks)

d) Describe two important characteristics of comparator circuits

(2 marks)

QUESTION FIVE (20 MARKS)

- a) Describe the operation of a comparator in performing the following functions
 - iii) zero crossing detection

(4 marks)

iv) level detection

(4 marks)

v) square wave generation

- (4 marks)
- b) A phase shift oscillator uses 5pF capacitors. Determine the value of resistance to produce an output frequency of 800KHz. (2 marks)
- c) Use a circuit diagram to describe the operation of a Wien-bridge Oscillator (6 marks)