

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE

OF

MASTER OF SCIENCE IN PHYSICS

COURSE CODE:

SPH 822 E

COURSE TITLE:

ENERGY BANDS, MAGNETISM AND AMORPHOUS SOLIDS

DATE: FRIDAY 22ND APRIL, 2022

TIME: 9:00 AM - 12:00 PM

INSTRUCTIONS TO CANDIDATES

- Answer ANY FIVE Questions
- Speed of light, $c = 3 \times 10^8 \text{ m/s}$

Electronic charge, $e = -1.6 \times 10^{-19}$ C

- Paramagnetic Susceptibility, $\chi_{Para} = \frac{\mu_0 N p^2 \mu_B^2}{3 k_B T} = \frac{C}{T}$ Curie's law
- Total magnetic susceptibility, $\chi_{Total} = \chi_{Para} + \chi_{Diamagnetic} = \frac{C}{T} + \chi_{Diamagnetic}$
- Boltzman Constant , $k_B = 1.38 \times 10^{-23}$ J K $^{-1}$ Avogadro Constant $N = 6.022 \times 10^{-23}$ mol $^{-1}$
- Bohr magneton $\mu_B = 9.274 \times 10^{-24}$ J T⁻¹

MMUST observes ZERO tolerance to examination cheating

This paper consists of 4 printed pages. Please Turn Over

QUESTION ONE

[14 Marks]

- a) Explain how a diamagnetic material responds to an externally applied magnetic field H. Define the magnetization M, the susceptibility χ and the relative permeability μ_r of a diamagnet and comment on their magnitudes. [2 marks]
- b) What is the significance of the fact that all materials have a contribution to their susceptibility which is diamagnetic? [1 mark]
- c) Give a detailed account of the model proposed by **Langevin for the diamagnetic state**. Show that the susceptibility χ per unit volume of a material of atomic number Z is given by,

$$\chi = -\mu_0 N Z \frac{e^2}{6m} < \rho^2 >$$

Where μ_0 is the permeability of free space, N is the number of atoms per unit volume, e and m are the charge and mass of the electron respectively and $<\rho^2>$ is the mean square radius of the electron orbits. [8 marks]

a) Given that the diamagnetic susceptibility of Hydrogen is -1.2×10^{-11} per mole, find the value of the mean square radius of the first Bohr orbit in the Hydrogen atom. [3 marks]

QUESTION TWO

[14 MARKS]

- a) What do you understand by the term "Pauli paramagnetism"? [2 marks]
- b) Explain with the aid of diagrams showing the electron density of states, how Pauli paramagnetism arises in a simple metal which can be described by the free electron model. Hence, or otherwise, show that the susceptibility of the Pauli paramagnet is given by

$$\chi_p = \mu_0 \mu_B^2 \rho(E_F)$$

where μ_0 is the permeability of free space, μ_B is the Bohr magneton and $\rho(E_F)$ is the density of electron states at the Fermi level. [7 marks]

c) How does the value of χ_p compare with the value of χ predicted by the Curie-Weiss law?

[3 marks]

d) How does χ_n vary with temperature?

[2 marks]

QUESTION THREE

[14 Marks]

a) What are amorphous materials?

[1 mark]

b) Briefly describe how amorphous materials are prepared and characterized

[4 marks]

c) Briefly Explain any five physical properties of different amorphous materials [5 marks]

d) Mention any four applications of amorphous materials

[4 marks]

QUESTION FOUR

[14 Marks]

(a) What are the characteristic bulk magnetic properties of a ferromagnet? [3 mark]

(b) Draw a graph of the magnetisation curve M versus H of a typical ferromagnet and identify its salient features.

Hence explain what is meant by the terms

- (i) Remnant Magnetisation,
- (ii) Coercive Field,
- (iii) Hysteresis Loop,

illustrating your answer with suitable graphs.

[5 marks]

(c) P. Weiss gave a qualitative description of the magnetisation curve of a ferromagnet on the assumption that it consisted of small regions called domains, which are spontaneously magnetised. What mechanisms have been proposed to account for the spontaneous magnetisation of a ferromagnet on an atomic scale, and what success have they achieved?

[4 marks]

(d) Gadolinium has a Curie temperature of 292 K and a magnetic moment of 7.63 μ_B per atom. For Gadolinium, J = S = 7/2; g = 2; $N = 3.0 \times 10^{28}$ m⁻³ Estimate the magnitude of the so-called "internal field" that is responsible for the spontaneous magnetisation of gadolinium.

[2 marks]

QUESTION FIVE

[14 Marks]

By considering the different electron models, outline briefly some of the shortcomings of each of the following in explaining the behaviour of electrons in the crystal lattice.

[4 marks] a) Free electron model [5 marks] b) Nearly free electron model Orthogonalized plane wave method [5 marks] c)

QUESTION SIX

[14 Marks]

The susceptibility of MnF2 was measured in the paramagnetic region above the Neel temperature with the following results

Temperature (K)	300	200	160	90
Susceptibility, χ (SI)	0.0059	0.0079	0.0091	0.0123

- a) By plotting a suitable graph, Show that MnF₂ is antiferromagnetic and determine the Curie-[9 marks] Weiss parameter, θ .
- b) Calculate the effective number of Bohr magnetons and verify the result by comparing with the free ion value for the configuration 3d⁵ of Mn²⁺. MnF2 crystallizes in a body-centred tetragonal cell with a = b = 0.487 nm; c = 0.331 nm and the two formula units per unit cell.

[5 marks]

QUESTION 7 [14 Marks]

The molar susceptibility of paramagnetic chromium sulphate, (CrK (SO_4). 12 H_2O) sample has been measured at 20 $^{\circ}$ C with the result: $\chi_m = 7.94 \times 10^{-5} \, m^3 \, / \, kmol$.

a) Determine the experimental effective number of Bohr magnetons for the chromium ion.

[4 marks]

b) Find the corresponding theoretical value for Cr^{3+} with the configuration $3d^3$.

[4 marks]

c) The magnetic susceptibility γ of a diamagnetic sample is measured to check for a suspected manganese (paramagnetic) impurity. The following results are obtained.

Temperature, T (K)	300	180	145	115
Susceptibility, χ (SI Units)	-8.88	-8.50	-8.24	-7.86

(i) Use a suitable diagram to show that the sample contains a paramagnetic impurity

- Calculate the concentration of the impurity, assuming that it is Mn 2+ ions with the (ii) configuration $3d^5$.
- (iii)Estimate the diamagnetic susceptibility of the pure substance.