

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

COURSE CODE:

SPH 850E

COURSE TITLE:

THEORY OF SEMICONDUCTOR

DATE: TUESDAY 19TH APRIL, 2022

TIME: 9:00 AM - 12:00 PM

INSTRUCTIONS TO CANDIDATES

TIME: 3 Hours

Answer any five questions. All questions carry equal marks (14mks) Symbols used bear the usual meaning.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

Useful Constants

Electronic charge, $q = 1.6 \times 10^{-19} C$ Permittivity of free space, $\varepsilon_0 = 8.854 \times 10^{-14} F/cm$ Boltzmann constant, $k = 8.62 \times 10^{-5} eV/K$ Planck constant, $h = 4.14 \times 10^{-15} eV \cdot s$ Free electron mass, $m_0 = 9.1 \times 10^{-31} kg$ Thermal voltage kT/q = 26 mV at room temperature kT = 0.026 eV = 26 meV at room temperature kT = 0.026 eV = 26 meV at room temperature

Question One (14 marks)

- (a) What are the advantages and disadvantages of quantum free electron theory? (3 marks)
- (b) Calculate the thermal equilibrium electron and hole concentration in silicon at T=300K, where the Fermi energy level is 0.22 eV below the conduction band energy E_c . ($E_F=E_c-0.22 \text{ eV}$). Assume $N_c=2.8\times 10^{19} \text{ cm}^{-3}$ and $N_v=1.04\times 10^{19} \text{ cm}^{-3}$ (6 marks)
- (c) Find the resistivity of intrinsic silicon at room temperature and classify it as an insulator, semiconductor, or conductor. ($\mu_n \approx 1350 \text{ (cm}^2/\text{V} \cdot \text{s)}, \mu_p \approx 500 \text{ (cm}^2/\text{V} \cdot \text{s also assume "room temperature" with } n_i = 10^{10} \text{ cm}^{-3}$) (5 marks)

Question Two (14 marks)

- (a) Distinguish between intrinsic, extrinsic and compensated semiconductor (2 marks)
- (ii) Derive the expression for intrinsic carrier concentration in intrinsic semiconductors.(4 marks)
- (b) Explain with aid of a diagram the difference between degenerate and non-degenerate semiconductor. (8 marks)

Question Three (14 marks)

- (a) Derive the expression for current generated due to drifting of charge carriers in semiconductors in the presence of electric field. (7 marks)
- (b) Consider a gallium arsenide sample at T=300K with doping concentration of $N_a=0$ and $N_d=10^{16}cm^{-3}$. Assume complete ionization and assume electron and hole mobilities given is $\mu_n=8500~cm^2/v.s$ and $\mu_p=400~cm^2/v.s$. Calculate the drift current density if the applied electric field is E=10~V/cm. (7 marks)

Question Four (14 marks)

- (a) Differentiate between Complete ionization and Freeze-out as applied to semiconductors. (2 marks)
- (b) Assuming there is complete ionization, consider Germanium at 300K: $n_i = 2.4 \times 10^{13} cm^{-3}$, $N_a = 5 \times 10^{13} cm^{-3}$, and $N_a = 0$. Calculate the electron n_o and hole p_o concentration. (4 marks)

(c) Prove that the Fermi level is lies exactly in between conduction band and valence band of intrinsic semiconductor. (8 marks)

Question Five (14 marks)

- (a) Explain quantum confinement distinguishing clearly between Quantum Wells, Quantum Wire and Quantum Dots. (6 marks)
- (b) Describe with the aid of diagrams the three primary processes used in lithography. (8 marks)

Question Six (14 marks)

(a) Describe with aid of a diagram the Hall Effect in a semiconductors.

(7 marks)

- (b) Give the expressions of the electron density n (hole density p) in the conduction band (valence band, respectively. (2 marks)
- (c) Discuss qualitatively the evolution of the Fermi level from 0K until high temperatures above 600K. Sketch also qualitatively the Fermi level position and the fraction of ionized impurities in such a wide temperature range. (5 marks)