

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATION **2021/2022 ACADEMIC YEAR**

SEMESTER ONE MAIN EXAMINATION

FOR THE DEGREE OF

BACHELOR OF EDUCATION IN TECHNOLOGY (MECHANICAL ENGINEERING) (FOURTH YEAR)

COURSE CODE:

TEM 471

COURSE TITLE: THERMODYNAMICS II

DATE: 27-04-2022

TIME: 08:00-10:00

INSTRUCTIONS:

- 1. This paper contains FOUR questions
- 2. QUESTION ONE IS COMPULSORY
- 3. Attempt any TWO questions from the remaining.
- 4. Question ONE carries 30 marks and the REST 20 marks each.
- 5. Examination duration is 2 (TWO) HOURS

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30Marks)

- a) In an ideal Otto cycle engine, the temperature and pressure at the beginning of compression are 43°C and 100 kPa respectively and the temperature at the end of adiabatic compression is 323°C. If the temperature at the end of constant volume heat addition is 1,500°C, calculate: (20Marks)
- (i) The compression ratio
- (ii) The air-standard efficiency
- (iii) The temperature and pressure at the end of adiabatic expansion. Assume ratio of specific heat for air, γ as 1.4.
 - b) Discuss the differences between internal combustion engines and external combustion engines. (10Marks).

QUESTION TWO (20Marks)

- a) Outline at least four assumptions made for describing the working of an air standard Carnot engine. (8Marks).
- b) Discuss the reasons why liquid fuels are more advantageous in comparison to sold fuels (8Marks).
- c) Define the terms Molecules and Atoms in relation to thermodynamics (4Marks).

QUESTION THREE (20Marks)

A Carnot cycle works on steam between the pressure limits of 7 MPa and 7 kPa. Draw the T-S representation for this Carnot cycle operation.

Determine:

- i) Thermal efficiency
- ii) Turbine work
- iii) Compression work per kg of steam.

QUESTION FOUR (20Marks)

- a) The chemical formula for alcohol is C₂H₆O. Calculate the stoichiometric air/fuel ratio by mass and the percentage composition of the products of combustion per kg of C₂H₆O (15 Marks).
- b) List the basic measurements to be undertaken to evaluate the performance of a SI or CI engine (5 Marks).

APPENDICES

Table 11.1. Symbols and Molecular weights

Elements / Compounds / Gases	Molecule		Atom	
	Symbol	Molecular weight	Symbol	Molecular weight
Hydrogen	H_2	2	Н	1
Oxygen	02	32	0	16
Nitrogen	N ₂	28	N	14
Carbon	C	12	C	12
Sulphur	S	32	S	32
Water	H ₂ O	18	_	_
Carbon monoxide	CO	28	_	
Carbon dioxide	CO ₂	44	_	
Sulphur dioxide	SO ₂	64	_	_
Marsh gas (Methane)	CH ₄	16	_	_
Ethylene	C_2H_4	28	_	_
Ethane	C_2H_6	30	_	

