

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY DEPARTMENT OF MATHEMATICS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR TOWN CAMPUS - SCHOOLBASED

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

BACHELOR OF EDUCATION (SCIENCE AND ARTS)

COURSE CODE:

STA 241

COURSE TITLE:

PROBABILITY AND DISTRIBUTION MODELS

DATE: 22ND APRIL 2022

TIME: 9.00-11.00AM

A. INSTRUCTIONS TO CANDIDATES

Answer question ONE and ANY OTHER TWO questions.
 Time 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30Marks)

- a) Define the following terms:
 - i. Random variable
 - ii. Sample space
 - iii. Probability density function
 - iv. Cumulative distribution function.

(4marks)

b) The probability density function of random variable X is given by

$$f(x) = \begin{cases} \frac{1}{2}(x+1) & ; -1 < x < 1\\ 0 & ; otherwise \end{cases}$$

Find

i. E(X) (3marks)

ii. Var(X) (4marks)

iii. Var(5X+10) (2marks)

c) A random variable Y has probability density function given by

$$f(y) = \begin{cases} p^{y}(1-p)^{1-y} ; y = 0,1\\ 0 ; otherwise \end{cases}$$

- i. Obtain the moment generating function (m.g.f) (3marks)
- ii. Use the m.g.f obtained in (i) to find mean and variance of Y. (4marks)
- d) In a given supermarket, 60% of the customers pay by credit card. Find the probability that in a randomly selected sample of 10 customers
 - i. Exactly 3 pay by credit card. (2marks)
 - ii. At least eight pay by credit card. (3mks)
- e) The moment generating function of a random variable X from normal population is e^{4t+6t^2} Find p(X > 8) (5mks)

QUESTION TWO (20marks).

a) Consider the probability density function given by,

$$f(x) = \begin{cases} k(8x+2); & 1 \le x \le 5 \\ 0 & elsewhere \end{cases}$$

Where k is a constant. Calculate the:

i. Value of k. (2 marks)

ii.
$$E(x)$$
 (1 mark)

iii.
$$Var(x)$$
 (3 marks)

iv. C.D.F,
$$F(x)$$
 (2 marks)

v.
$$P(-0.5 < x < 2)$$
 (2 marks)

b) The probability density function of a random variable X is given by

$$f(x) = \begin{cases} (1-p)^{x-1}p \; ; x = 1,2,3, \dots \\ 0 \; ; \; otherwise \end{cases}$$

i. Show that the factorial m.g.f. is
$$M_X(t) = \frac{pt}{1 - qt}$$
 (3marks)

ii. Use the m.g.f above to show that
$$E(X) = \frac{1}{p}$$
 and $Var(X) = \frac{q}{p^2}$ (7marks)

QUESTION 3 (20Marks)

a) Find the m.g.f for the distribution whose probability mass function is given by;

$$p(x) = \begin{cases} \frac{1}{6} \left(\frac{5}{6}\right)^{x}; & x = 0, 1, 2, 3, ... \\ 0; & otherwise \end{cases}$$

Use the m.g.f technique to determine the mean and variance of the distribution. (8mks)

b) In a region, the number of people who become ill from a given disease is a random

variable having Poisson distribution
$$f(x) = \frac{e^{-2}2^x}{x!}$$
; $x = 0,1,2$

Find the probability of

c) The moment generating function of a random variable X is $e^{4(e^t-1)}$. Find

$$p(\mu - 2\sigma < x < \mu + 2\sigma) \tag{5marks}$$

QUESTION 4 (20marks)

a) Juma is playing a board game in which he needs to throw a six with an ordinary die in order to start the game. Find the probability that

iv. He is successful in throwing a six in five or fewer attempts. (3mks)

b) A random variable X is normally distributed with mean $\mu = 50$ and variance $\sigma^2 = 100$.

i.
$$p(X < 65)$$
 (3mks)

ii.
$$p(X > 72)$$
 (3mks)

iii.
$$p(33 < X < 45)$$
 (4marks)

QUESTION 5 (20marks)

a) The random variable X has probability density function given by $f(x) = \begin{cases} \lambda e^{-\lambda x}; x > 0 \\ 0; otherwise \end{cases}$

i. Show that the m.g.f. is given by
$$M_X(t) = \frac{\lambda}{\lambda - t}$$
 (4marks)

ii. Using the M.g.f above obtain the mean and variance of X. (6marks)

b) A random If e^{3t+8t^2} is the moment generating function of a random variable X. Find

ii.
$$E(X^2 + 2X)$$
 (3marks)

iii.
$$P(-1 < X < 9)$$
 (4marks)