

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR (MAIN CAMPUS)

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATIONS FOR THE DEGREE OF

MASTER OF SCIENCE (STATISTICS)

COURSE CODE:

STA 803

COURSE TITLE: STATISTICAL INFERENCE I

DATE: Monday 25th April, 2022

TIME: 09:00 - 12:00 Hrs

INSTRUCTIONS TO CANDIDATES

- 1. This paper consists of FIVE QUESTIONS.
- 2. ANSWER ANY THREE QUESTIONS
- 3. In each question, show your working clearly
- 4. There will be marks for proper working even if the answer is wrong
- 5. Calculators and Statistical tables may be used

(= V AAAMA AND)

Time: 3 hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question 1

- a. Let $\hat{\theta}_n$ be an estimator of θ . Show that, the mean squared error (MSE) of $\hat{\theta}$ can be written as $MSE(\hat{\theta}_n) = Bias(\hat{\theta}_n)^2 + Var(\hat{\theta}_n)$ (3 marks)
- b. Maximum likelihood estimators have a desirable *invariance* property. That is, if $\hat{\theta}_n$ is the MLE of θ , and $\eta = g(\theta)$ is some transformation, then the MLE of η is $\hat{\eta} = g(\hat{\theta}_n)$. Explain the intuition behind this fact.
- c. If $X = X_1, X_2, ..., X_n$ are i.i.d. Bernoulli (θ) .
 - i. Show that $X \sim Ber(\theta)$ belongs to an exponential family with $\eta(\theta) = \log \frac{\theta}{1-\theta}$, hence find the sufficient statistic for θ . (4 marks)
 - ii. Find the canonical link and write down the formula for θ_i in terms of a predictor variable x_i and a parameter β . (4 marks)
- d. Let $X_1, X_2, ..., X_n$ be iid from the exponential distribution with density

$$f(x) = \begin{cases} \frac{1}{\theta} e^{-\frac{x}{\theta}}; & x > 0 \text{ and } \theta > 0\\ 0; & o.w \end{cases}$$

Find the approximations to $E\left[\sqrt{\overline{x}}\right]$ and $Var\left[\sqrt{\overline{x}}\right]$. (5 marks)

Question 2 (20 marks)

a. Let $\underline{X} = X_1, X_2, ..., X_n$ are iid $U(0, \theta)$. Show that;

i. the MLE of
$$\theta$$
 is $\hat{\theta} = \max_{1 \le i \le n} X_i$ (3 marks)

ii.
$$n(\theta - \hat{\theta})$$
 converges in distribution to $Exp(\theta)$ (4 marks)

b. Let $X_1, X_2, ..., X_n$ be iid as N(0,1). Consider the two estimators

$$T_n = \begin{cases} \overline{X}_n; & \text{if } S_n \leq a_n \\ n; & \text{if } S_n > a_n \end{cases}$$

where $S_n = \sum (x_i - \overline{x})^2$, $P(S_n > a_n) = \frac{1}{n}$, $T_n = \frac{(X_1, X_2, ..., X_{k_n})}{k_n}$, with k_n the largest integer $\leq \sqrt{n}$

Show that the asymptotic efficiency of T'_n relative to T_n is zero. (5 marks)

c. Suppose $X = X_1, X_2, ..., X_n$ are iid $N(\theta, \theta^2)$.

- i. Show that $N(\theta, \theta^2)$ has an exponential family form. (3 marks)
- ii. Find the minimal sufficient statistic for θ . (2 marks)
- iii. Show that your minimal sufficient statistic is not complete (3 marks)

Question 3 (20 marks)

- i. What is the effect of increasing the level of confidence on the constructed width of the confidence interval for population mean μ ? (2 marks)
- ii. You are designing an experiment that involves taking a random sample from an infinitely large, normally distributed population with known standard deviation $\sigma = 1.5$. Your experiment requires a

(6 marks)

confidence-interval estimate that will give 95% confidence that the margin of error of the estimate (3 marks) of μ is E = 0.92. How large should the sample be?

- b) Suppose $X_1, X_2, ..., X_n$ are iid $Poisson(\lambda)$.
 - Show that \overline{x} is the UMVU estimator for λ .

ii. For
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
, show that $E[S^2] = E[\overline{x}] = \lambda$. (3 marks)

The following data give the distribution of life (t) in hours of 200 electric bulbs of a certain manufacturing company. Assuming that the distribution of t follows the exponential law

$$f(t,\theta) = \begin{cases} \frac{1}{\theta} e^{-\frac{t}{\theta}}; \ t > 0 \ and \ \theta > 0 \\ 0; \ o.w \end{cases}$$

Find the value of the character θ by the method of (i) MME and (ii) MLE. How do the two estimators (6 marks) compare?

(20 marks) **Question 4**

a) Suppose that $X_1, X_2, ..., X_n$ are i.i.d. with density $p_{\theta}(x) = g(x, \theta) = \frac{1}{\pi(1+x^2)}$; $x \in \Re$, where g is a

Cauchy density. Assuming that g' exists and the other regularity conditions hold, find the CRLB for (6 marks) $\tau(\theta) = e^{-\theta}$.

b) Let $X_1, X_2, ..., X_n$ are i.i.d. with density Weibull (α, β) , such that,

$$f(x,\alpha,\beta) = \begin{cases} \alpha\beta(\alpha x)^{\alpha-1} e^{-(\beta x)^{\alpha}} & ; x \ge 0\\ 0 & ; otherwise \end{cases}$$

If α is known, find the MLE of β .

(5 marks)

c) Let $\underline{X} = X_1, X_2, ..., X_n$ be a random sample of size n from a population with normal distribution with mean μ and variance σ^2 . Find the UMVUE of μ and σ^2 . (8 marks)

Ouestion 5

is a sample of n observations from i.i.d. random variables having Suppose $X_1, X_2, ..., X_n$ a $Poisson(\mu)$ distribution.

a) We wish to make inferences on $g(\mu) = \log(\mu)$. Show that the MLE of:

(3 marks)

- $g(\mu) = \log(\mu)$ is $g(\hat{\mu}) = \log(\overline{x})$ (2 marks) ii.
- (6 marks) Derive the asymptotic distribution for $g(\hat{\mu})$. iii.
- Now suppose that the number of radioactive emissions per second from a source is thought to iv. follow a $Poisson(\mu)$ distribution. Suppose 100 independent counts of the number of emissions give a mean count of $\bar{x} = 1.2$. Calculate a 99% confidence interval for $\log(\mu)$, and convert this (4 marks) back to a 99% confidence interval for μ .
- b) Determine the UMVU estimator of $P[X_i = 0] = e^{-\lambda}$ and hence calculate the variance of its estimator up to (5 marks) terms of order $\frac{1}{n}$