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Let én be an estimator of @ . Show that, the mean squared error (MSE) of f can be written as

MSE (én ) = Bias (é" )2 +Var (én ) ' (3 marks)

Maximum likelihood estimators have a desirable invariance property. That is, if 6, is

the MLE of @ , and n=g(6) is some transformation, then the MLE of 7 1s ﬁ=g(é,,) .

Explain the intuition behind this fact. (4 marks)
If X = X,,X,,...,X, areiid. Bemoulli(6).

i.  Show that X ~ Ber(@) belongs to an exponential family with 77 (0) =logI% , hence find

the sufficient statistic for 6. (4 marks)
i,  Find the canonical link and write down the formula for 6, in terms of a predictor
variable x, and a parameter J . (4 marks)

Let X,,X,,..., X, beiid from the exponential distribution with density

%e”‘%;x>0and 6>0

f(x)=
0; ow
Find the approximations to £ [ﬁ :l and Var I:\/:f- :I ‘ (5 marks)
Question 2 (20 marks)
a. Let X=X,,X,,...,X, areiid U(O,H). Show that;
i, the MLEof 6 is § = max,,, X, (3 marks)
ii. n (9 -6 ) converges in distribution to Exp («9 ) (4 marks)
Let X, X,,...,X, beiidas N(O, 1) . Consider the two estimators
X,;if S, <a,
" ={n; if §,>a,
where S, = Z(x,. —)?)2 , P(Sn >a, ) = %, 7:, = (Xl’sz,m’Xk" ) , with k, the largest integer < \/;
Show that the asymptotic efficiency of T,1 relative to T, is zero. (5 marks)
Suppose X = X, X,,...,X, areiid N(@,HZ).
i.  Show that N (0, 02) has an exponential family form. (3 marks)
ii.  Find the minimal sufficient statistic for 6. (2 marks)
iii.  Show that your minimal sufficient statistic is not complete (3 marks)

Question 3 (20 marks)

i, What is the effect of increasing the level of confidence on the constructed width of the confidence
interval for population mean £ ? (2 marks)

ii.  You are designing an experiment that involves taking a random sample from an infinitely large,
normally distributed population with known standard deviation o =1.5. Your experiment requires a
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confidence-interval estimate that will give 95% confidence that the margin of error of the estimate

of u is E =0.92. How large should the sample be? (3 marks)
b) Suppose X, X,,...,X, areiid Poisson(l).
i, Show that X is the UMVU estimator for 4. (6 marks)
ii. For SZ:—LlZ(xi—f)l,showthat E[:Sz}=E[)?]:i. (3 marks)
n—1q

¢) The following data give the distribution of life (t) in hours of 200 electric bulbs of a certain manufacturing
company. Assuming that the distribution of t follows the exponential law

%e_#;t>0 and >0

f(2,0)=

0; ow

Find the value of the character @ by the method of (i) MME and (ii) MLE. How do the two estimators

compare? (6 marks)
Question 4 (20 marks)

1
a) Suppose that X, X,,..., X, areii.d. with density p, (x) =g (x,@) =———X€ R, where gisa
V4 (1 +x )
Cauchy density. Assuming that g’ exists and the other regularity conditions hold, find the CRLB for
T (6’) =e”, (6 marks)

b) Let X,,X,,...,X, areii.d. with density Weibull (a,ﬂ) , such that,
a-l (g
flnap)=|ple 0 T e

0 ; otherwise

If @ is known, find the MLE of f. (5 marks)
¢) Let X =X,,X,,....,X, bearandom sample of size n from a population with normal distribution with mean
4 and variance o?. Find the UMVUE of x and o’. (8 marks)
Question 5 (20 marks)
Suppose X, X,,...., X, is a sample of n observations from i.i.d. random variables having

a Poisson ( ,u) distribution.

a) We wish to make inferences on g ( y) =log ( ,u) . Show that the MLE of:

i. j=Xx (3 marks)
i g(p)=log(u) is g(it)=1og(X) (2 marks)
iii.  Derive the asymptotic distribution for g ( [1) . (6 marks)

iv.  Now suppose that the number of radioactive emissions per second from a source is thought to
follow a Poisson( /1) distribution. Suppose 100 independent counts of the number of emissions
give a mean count of X =1.2. Calculate a 99% confidence interval for 1og( ,u) , and convert this

back to a 99% confidence interval for p. (4 marks)
b) Determine the UMVU estimator of P[X .= O] = ¢ * and hence calculate the variance of its estimator up to

1
terms of order — (5 marks)

n
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