

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

(MAIN EXAMINATIONS)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (ENGINEERING)

COURSE CODE:

MAT 202 E/MAT 204

COURSE TITLE: ENGINEERING MATHEMATICS II

DATE: TUESDAY 28ND APRIL 2022 TIME: 3.00-5.00 P.M

Instructions to candidates:

Attempt Question One [Compulsory] and Any Other Two Questions.

Time: 2 hours

This paper consists of 4 printed pages. Please turn over.

QUESTION ONE (30 MARKS) (COMPULSORY)

a) Apply the Gauss-Seidel Scheme up to n=3, taking $(x_0, y_0, z_0) = (1,1,1)$ to the 4x-y=1

system:
$$-x + 4y - z = 2$$
 (5Marks)
 $-y + 4z = 3$

b) Find the approximate root of 2x - log x - 7 = 0 by the fixed point iteration. Let $x_0 = 1$ up

(5Marks)

- c) Using Linear interpolation formula find the equation for the given coordinates (6, 8) and (10, 16). What is the value of y when x=7? (4Marks)
- d) Find the sixth term of the sequence 8, 12, 19, 29, 42, ...

(5Marks)

e) Use the table below to find $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ of $y^3 = x$ at x = 50 and x = 55. Compare your

results with the analytic ones.

(6Marks)

X	50	51	52	53	54	55
Y	3.375	7.000	13.625	24.000	38.875	59.00

f) Given that $y_3 = 2$, $y_4 = 2$, $y_5 = -6$, $y_5 = 8$, $y_6 = 9$, $y_7 = 17$. Calculate $\Delta^4 y_3$

(5Marks)

QUESTION TWO (20 MARKS)

a) Solve the system of equations below by Crout's Method

(6Marks)

$$4x - y + z = 7$$
$$4x - 8y + z = -21$$

$$-2x + y + 5z = 15$$

b) Consider the following table of values.

(5Marks)

X	1	1.1	1.2	1.3	1.4	1.5
Y	2	2.1	2.3	2.7	3.5	4.5

Use Newton's Backward difference formula to find f(1.45)

c) Find $\int_{0}^{1} e^{2x} dx$ given that h=0.2. Use Trapezoidal rule and compare your results with analytic results and find the relative error. (5Marks)

d) Find the binary form of the decimal number (17.25)₁₀ and the denary form of the binary number (101.1101)₂ (4Marks)

QUESTION THREE (20 MARKS)

- a) Evaluate the integral $\int_0^1 \frac{dx}{1+x^2} dx$, for h₁=0.25 and h₂=0.125 using Romberg's method (4 d.p). Compare with analytic results. (5 Marks)
- b) Show that: (i) $D = \frac{1}{h} \left[\Delta \frac{\Delta^2}{2} + \frac{\Delta^3}{2} + \dots \right]$, (ii) $\Delta = E 1$ (iii) $E = (1 \nabla)^{-1}$ (6 Marks)
- c) Find the first term of the sequence whose second and subsequent terms are 8, 3, 0, -1, 0, ... (4Marks)
- d) Find a root of an equation $f(x) = x^3 x 1$ using the Secant Method. Let $x_0 = 1, x_1 = 2$ up to x_4 correct to 5 decimal places. (5Marks)

QUESTION FOUR (20 MARKS)

a) By the Least squares Method, find the best find the best fitting straight line to the data given below. (5Marks)

X	5	10	15	20	25	30
у	16	19	23	26	30	33

b) Find
$$y_{-1}$$
 if $y_0 = 2$, $y_1 = 9$, $y_2 = 28$, $y_3 = 65$, $y_4 = 126$ $y_5 = 217$ (5Marks)

c) Find f(15) using Newton's forward difference formula given the table below (5Marks)

X	-10	20	30	40	50	60	
у	46	66	81	93	101	117	

d) Assuming that a root of $x^3 - 9x + 1 = 0$ lies in the interval (2,4), find the approximate root by the bisection method (use 6 d.p and find x_7). (5Marks)

QUESTION FIVE (20 MARKS)

$$x + 2y + z = 3$$

- a) Solve the system below using Gauss-Jacobi Method 2x+3y+3z=10 (5Marks) 3x-y+2z=13
- b) Use Simposon's Rule to evaluate $\int_{4}^{5.2} (\ln x) dx$, taking h = 0.2. Compare with the analytic results. (5Marks)

c) The function tabulated below is $y = 2e^x - x - 1$. Find the third order derivative of the function at x = 0.4 and x = 0.9 correct to 4 decimal places. Compute the percentage error of the estimated result with respect to actual result. **(6Marks)**

X	0.4	0.5	0.6	0.7	0.8	0.9
У	1.5836	1.7974	2.0442	2.3275	2.6511	3.0192

d) Use Lagrange's formula to fit a polynomial to the data and hence find f(2.5) (4Marks)

X	-1	0	2	3
Y	-8	3	1	12

END OF EXAMINATION: GOOD LUCK