

MASINDE MULIRO UNIVERSITY OF SCIENCE AND **TECHNOLOGY**

(MMUST)

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE (MATHEMATICS WITH IT) AND

BACHELOR OF TECHNOLOGY (MATHEMATICS AND COMPUTER SCIENCE)

COURSE CODE:

MAT 206

COURSE TITLE:

ALGEBRAIC STRUCTURES

DATE:

Tuesday, 26th April 2022

TIME: 12 Noon – 2.00 pm

INSTRUCTIONS TO CANDIDATES

Answer question ONE (COMPULSORY) and any other TWO questions

Time: 2 hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (COMPULSORY) - 30 MARKS

- a. Let (G, *) be a group. Prove that for all $a \in G$, there exists a unique inverse element to a. (5 marks)
- b. Suppose a, b and c are integers and suppose $a \ne 0$ and $b \ne 0$, show that if a divides b and b divides c then a divides c. (4 marks)
- c. Factorize 38808 into primes and state the prime order of each of the prime factors. (4 marks)
- d. In S₆ with $\sigma = (135)(26)$ and $\tau = (13456)$, calculate $\sigma \tau$ and $\tau \sigma \tau$. (5 marks)
- e. Write out the multiplication tables for addition and multiplication modulo 4. Explain why $(\mathbb{Z}_4, +, \cdot)$ is a ring. (5 marks)
- f. Let (G, *) be a group. Prove that for all $a, b \in G$, $(a * b)^{-1} = b^{-1} * a^{-1}$. (6 marks)
- g. Define the following terms in the context of Algebraic Structures:
 - i. A composite number
 - ii. An abelian group
 - iii. A subgroup
 - iv. A field
 - v. Greatest common divisor

(5 marks)

QUESTION TWO - 20 MARKS

a. The table below represents a binary action on the set {a, b, c, d, e}. Use it to answer the questions that follow.

*	a	b	С	d	е
a	a	b	С	b	d
b	b	С	a	e	С
С	С	a	b	b	a
d	b	e	b	e	d
e	d	b	a	d	С

- i. Compute b * d, c * c and [(a * c) * e] * a. (4 marks)
- ii. Compute (a * b) * c and a * (b * c). Based on this computation would you say that the binary operation * is associative? Explain your answer. (4 marks)
- iii. Compute (b * d) * c and b * (d * c). Based on this computation, explain whether or not * is associative. (3 marks)
- iv. Is * commutative? Why?

(2 marks)

- b. Define a binary operation * on \mathbb{Q} , the set of rational numbers by a*b=ab+1. Determine whether or not the binary operation * is
 - i. Commutative
 - ii. Associative. Explain your answer in each case.

(4 marks)

c. Prove that the identity element in a group is unique.

(3 marks)

QUESTION THREE - 20 MARKS

a. Let S be the set of all real numbers except -1. Define * on S by

$$a * b = a + b + ab$$

i. Show that * is a binary operation on S. (1 mark)

ii. Show that (S, *) is a group. (15 marks) iii. Find the solution of the equation 2 * x * 3 = 7. (4 marks)

QUESTION FOUR - 20 MARKS

a. Prove that every cyclic group is abelian. (9 marks)

b. Let $M_2(\mathbb{R})$ be the set of two by two square matrices whose entries are real numbers. Determine all the elements of the cyclic subgroup of $M_2(\mathbb{R})$ generated by $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$. (3 marks)

c. Prove the left cancellation property in a group that if au = av for all a, u and v in G, then u = v (3 marks)

d. Prove, by the method of mathematical induction that, $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}, \text{ for all integers } n \ge 1. \tag{5 marks}$

QUESTION FIVE - 20 MARKS

- a. Determine the greatest common divisor of 22, 471 and 3,266 and express that gcd as a linear combination of the two numbers. (7 marks)
- b. Prove that a subgroup of a cyclic group is also cyclic. (13 marks)