

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

(MAIN EXAMINATION)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF SCIENCE (ECT, ETM)

COURSE CODE:

MAT 213

COURSE TITLE:

LINEAR ALGEBRA I

DATE: 27/04/2022

TIME: 12.00-2.00PM

Instructions to candidates:

Answers question ONE (COMPULSORY) and any other TWO questions.

Time: 2 hours

QUESTION ONE (30MARKS) COMPULSORY

- a) Consider the set of real 2×2 matrices M_2 . Show that M_2 is a vector space. (4marks)
- b) Determine the rank of the matrix $A = \begin{pmatrix} 3 & -3 & 3 \\ 2 & -1 & 4 \\ 3 & -5 & -1 \end{pmatrix}$ (3marks)
- c) Show that the system below has no solution

(4marks)

$$x_1 + x_2 + 5x_3 = 3$$
$$x_2 + 3x_3 = -1$$
$$-x_1 + 2x_2 + 8x_3 = 3$$

- d) i) Determine whether the vector (8,0,5) is a linear combination of vectors (1,2,3), (0,1,4) and (2,-1,1) in \mathbb{R}^n (3marks)
 - ii) Let $f(x) = 2x^2 5$ and g(x) = x + 1. Show that the function $h(x) = 4x^2 + 3x 7$ lies in the subspace span $\{f, g\}$ in set of polynomials of degree 2. (4marks)
- e) i) Distinguish between linear dependence and independence of vectors.
 - ii) Show that the set $\{x^2 + 1, 3x 1, -4x + 1\}$ is linearly independent in P_2 . (3marks)
- f) i) Define a linear transformation from a vector space U into vector space V. (2marks) ii) Determine if $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined as $T(x, x_1) = (2x_1, 2x_2)$ is a linear transformation
 - ii) Determine if $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined as $T(x_1, x_2) = (2x_1, 2x_2)$ is a linear transformation (5marks)

QUESTION TWO (20 MARKS)

- a) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x) = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 3 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find
 - i) Nullity of T

(6marks)

ii) Rank of T

(3marks)

- b) Given that $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation defined by $T \binom{x_1}{x_2} = \binom{2x_1 + x_2}{-x_1 x_2}$. Find the matrix of T with respect to the standard basis. (4marks)
- c) Show that if V is a vector space then any set of vectors in V that contains the zero vector is linearly independent. (3marks)
- d) Show that the set $\{x + 1, x 1, -x + 5\}$ is linearly independent in P_1 (4marks)

OUESTION THREE (20 MARKS)

a) Use Gauss-Jordan elimination to solve the system.

(6marks)

$$4x_1 + 8x_2 - 12x_3 = 44$$
$$3x_1 + 6x_2 - 8x_3 = 32$$
$$-2x_1 - x_2 = -7$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{pmatrix}$$

c) Find the determinant of the matrix
$$D = \begin{pmatrix} 1 & -2 & 0 \\ -3 & 5 & 1 \\ 4 & -3 & 2 \end{pmatrix}$$
 (3marks)

$$3x_1 - 3x_2 + 3x_3 = 9$$

$$2x_1 - x_2 + 4x_3 = 7$$

$$3x_1 - 5x_2 - x_3 = 7$$

QUESTION FOUR (20 MARKS)

- a) Let P_n denote the set of real polynomial functions of degree $\leq n$. Prove that P_n is a vector space if addition and scalar multiplication are defined on the polynomials in a point-wise manner. (6marks)
- b) Show that a set consisting of two or more vectors in a vector space is linearly independent if and only if it is possible to express one of the vectors as a linear combination of other vectors.
- c) Let the set $\{v_1, v_2\}$ be linearly independent. Prove that $\{v_1 + v_2, v_1 v_2\}$ is linearly independent. (5marks)
- d) Illustrate the addition axioms of a vector space V in \mathbb{R}^n (4marks)

QUESTION FIVE (20 MARKS)

 a) Use the method of Gauss-Jordan elimination to find the reduced echelon form of the system of equations.

$$2x_3 - 2x_4 + 2x_5 = 0$$
$$3x_1 + 3x_2 - 3x_3 + 9x_4 + 12x_5 = 0$$
$$4x_1 + 4x_2 - 2x_3 + 11x_4 + 12x_5 = 0$$

- b) If $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 3 & 2 \\ 1 & 0 & 3 \end{pmatrix}$, find A^{-1} by use of determinants and cofactors of A. (8marks)
- c) Solve by Cramer's rule the following set of simultaneous equations. (7marks)

$$5x - 6y + 4z = 15$$
$$7x + 4y - 3z = 19$$
$$2x + y + 6z = 46$$