

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE

IN

BACHELOR OF SCIENCE (SST, SMT, SME)

COURSE CODE:

MAT 202

COURSE TITLE:

LINEAR ALGEBRA II

DATE: 29/04/2022

TIME: 3.00PM - 5.00PM

INSTRUCTIONS TO CANDIDATES

- Section A is compulsory any other THREE questions from section B
- Do all the rough work in the answer booklet

TIME: 2 hours

QUESTION ONE (30 MARKS)

- a) Diagonalize the matrix $\begin{pmatrix} -1 & 3 \\ 0 & 2 \end{pmatrix}$. (5 Marks)
- b) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ by use of the Cayley-Hamilton theorem. (4 Marks)

Given that $B = \{(1,2,1), (2,9,0), (3,3,4)\}$ is a basis for an inner product space $V \subseteq \mathbb{R}^3$. Find the coordinate matrix of W = (5,-1,9) with respect to B. (5 Marks)

- d) Show that if $S = \{u_1, u_2, ..., u_n\}$ is an orthornomal set of vectors in an inner product space V, then for every $v \in V$, the vector $w = v \langle v, u_1 \rangle u_1 \langle v, u_2 \rangle u_2 \cdots \langle v, u_n \rangle u_n$ is orthogonal to each u_i . (3 Marks)
- e) Verify that the $S = \left\{ (0,1,0), \left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right), \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}} \right) \right\}$ is an orthornormal set I \mathbb{R}^3 . (3 Marks)
- f) Find the value of a scalar a so that the polynomial P(x) = -1 + ax is a unit vector in P_1 with the integral inner product on the interval [0,1]. (4 Marks)
- g) i) Show that if u is orthogonal to v, then every scalar multiple of u is orthogonal to v.

 (2 Marks)
 - ii) Find a unit vector orthogonal to both $v_1=(1,1,2)$ and $v_2=(0,1,3)$ in \mathbb{R}^3 (4 Marks)

QUESTION TWO (20 MARKS)

- a) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$. $B = \{(1,3, (-2,4))\}$ and $B' = \{(1,1,1), (2,2,0), (3,0,0)\}$ are bases of \mathbb{R}^2 and \mathbb{R}^3 respectively. Further $T(x_1, x_2) = (x_1 + 2x_2, -x_1, 0)$. Find the matrix of T with respect to B and B'. (8 Marks)
- b) Find a matrix P that orthogonally diagonalizes the matrix $A = \begin{bmatrix} 3 & -2 & 0 \\ -2 & 3 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. (7 Marks)
- c) Identify the curve whis represented by the following quadratic equation by first putting it into standard conic form. (5 Marks)

$$x^2 + 2xy + y^2 - x + y = 0$$

QUESTION THREE (20 MARKS)

- a) For the matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 3 & 2 \\ 3 & 0 & 1 \end{bmatrix}$
 - i) Write down the characteristic polynomial
 - ii) Write down the characteristic equation
 - iii) Find the eigen values and eigen vectors corresponding to each eigen value.
 - iv) Find the basis for each eigen space.

(12 marks)

- b) If V is an n -dimensional vector space and $[.]_B$ is a coordinate mapping with respect to basis B, Show that
 - i) $[u + v]_B = [u]_B + [v]_B$ for $u, v \in V$
 - ii) $[\lambda v]_B = \lambda [v]_B \text{ for } \lambda \in \mathbb{R}, v \in V$

(4 Marks)

c) Verify that the following is an inner product in P_2

$$\langle p(x), q(x) \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2$$

where
$$p(x) = a_0 + a_1 x + a_2 x^2$$
 and $q(x) = b_0 + b_1 x + b_2 x^2$. (4 marks)

QUESTION FOUR (20 MARKS)

- a) Show that a square matrix $A_{n\times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors. (8 Marks)
- b) If v_1, v_2, Λ , v_n are eigenvectors associated with distinct eigenvalues $\lambda_1, \lambda_2, \Lambda$, λ_n of a matrix A_{nxn} , show that the set $\{v_1, v_2, \Lambda, v_n\}$ is linearly independent. (6 Marks)
- c) Let V be the vector space of polynomials over \mathbb{R} and define $\langle f(t), g(t) \rangle = \int_{0}^{1} f(t)g(t)dt$.

Find the angle θ between u and v if u = 2t - 1 and $v = t^2$.

(6 Marks)

QUESTION FIVE (20 MARKS)

- a) Consider the following bases of \mathbb{R}^2 ; $B = \{(1,0), (0,1)\}$ and $B' = \{(1,2), (2,3)\}$. Let $T(x_1, x_2) = (x_1 + 7x_2, 3x_1 4x_2)$. Find
 - i) Find A, the matrix of representation of T with respect to B.
 - ii) Find A' i.e. matrix of representation of T with respect to B' by using $A' = P^{-1}AP$ where P is transition matrix from B' to B. (7 Marks)
- b) State and prove the Cauchy Schwarz inequality. (7 Marks)
- c) Let $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$. Find all eigenvalues of A and the corresponding eigenvectors. Also find an invertible matrix P such that $P^{-1}AP = D$ (where D is diagonal matrix). (6 Marks)