

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE (IN MATHEMATICS)

COURSE CODE: MAT 222

COURSE TITLE: ADVANCED CALCULUS

DATE: APRIL 25, 2022

TIME: 3.00 PM - 5.00 PM

Instruction to the candidates:

Answer question ONE (COMPULSORY) and any other TWO questions Time: 2 hours

This paper consists of 3 printed pages. Please turn over.

SECTION A: Answer ALL the questions in this section

QUESTION ONE - 30 MARKS (COMPULSORY)

(a) Define continuity of the function f(x, y) at the point (a, b).

[2 mks]

(b) Evaluate

$$\lim_{(x,y)\to(0,0)} \frac{x^3+y^3}{x^2+y^2}.$$
 [3 mks]

- (c) The possible error involved in measuring each dimension of a rectangular box is $\pm 0.01cm$. The dimensions of the box are x = 50cm, y = 20cm and z = 15cm. Use differentials to estimate the propagated error in the calculated volume of the box. [4 mks]
- (d) Given $Z = x^2y^3$ where x = Sint and y = Cos3t find $\frac{dz}{dt}$. [4 mks]
- (e) Find the directional derivative of $f(x,y)=3x^2-2y^2$ at the point $(-\frac{3}{4},0)$ in the direction of the vector $v=\frac{3}{4}i+j$. [4 mks]
- (f) Evaluate the iterated integral

$$\int_{1}^{2} \int_{0}^{4} (x^{2} - 2y^{2} + 1) dx dy$$

[4 mks]

- (g) Find the equation of the tangent plane and the normal to the surface $Z = x^2 + 5xy 2y^2$ at the point (1,2,3) [5 mks]
- (h) Determine if the sequence $\{\frac{2n}{1+n}\}$ is monotonic. [4 mks]

SECTION B: Answer any TWO questions from this section

QUESTION TWO - 20 MARKS

- (a) A ball is dropped from a height of 9 feet and begins bouncing up two-thirds of the previous distance on each bounce. Find the total vertical distance traveled by the ball. [5 mks]
- (b) Use the integral test to check for convergence or divergence of the series

$$\sum_{n=1}^{\infty} \frac{2}{3n+5}$$

[5 mks]

(c) Find the radius of convergence of the series

$$\sum_{n=0}^{\infty} 3(x-2)^n$$

[5 mks]

(d) Find the Taylor series polynomial of degree 4 for the function $f(x) = \frac{1}{x}$ about the point x = 1 [5 mks]

QUESTION THREE - 20 MARKS

- (a) Given $f(x,y) = xe^{x^2y}$ find f_x and f_y at the point $(1, \ln 2)$. [4 mks]
- (b) The temperature at any point (x, y) in a steel plate is $T = 500 0.06x^2 1.5y^2$. In what direction from the point (2,3) does the temperature increase most rapidly? What is this rate of increase? [5 mks]
- (c) Suppose that x and y are related by the equation F(x,y)=0, where it is assumed that y=f(x) is a differentiable function of x. Derive an expression for $\frac{dy}{dx}$ and hence find $\frac{dy}{dx}$ given $y^3+y^2-5y-x^2+4=0$. [6 mks]
- (d) Determine and distinguish the extrema of $f(x,y) = x^2 + 6xy + 10y^2 4y + 4$ [5 mks]

QUESTION FOUR - 20 MARKS

- (a) The profit obtained by producing x units of product A and y units of product B is approximated by the model $P(x,y) = 8x + 10y (0.001)(x^2 + xy + y^2) 10000$. Find the production level that maximizes profit and determine the maximum profit. [7 mks]
- (b) Using Lagrange multipliers find the minimum value of the function $f(x, y, z) = 2x^2 + y^2 + 3z^2$ subject to the constraint 2x 3y + 4z = 49 [7 mks]
- (c) Find the limit of the sequence $\{n^3e^{-n}\}$ [3 mks]
- (d) Show that $z = e^{-y} sinx$ satisfies the Laplace equation $z_{xx} + z_{yy} = 0$. [3 mks]

QUESTION FIVE - 20 MARKS

(a) Evaluate

$$\int_{R}\int sin\theta dA$$

where R is the first quadrant region lying inside the circle given by $r = 4\cos\theta$ and outside the circle given by r = 2 [7 mks]

(b) Evaluate

$$\int_0^4 \int_0^\pi \int_0^{1-x} x siny dz dy dx$$

[6 mks]

- (c) Given the functions $u^2 + xv^2 = x + y$ and $v^2 + yu^2 = x y$ where u and v are functions of the independent variables x and y, find $\frac{\partial u}{\partial x}$ using Jacobians. [4 mks]
- (d) Find the total differential of $z = 2x^2y + xy^3$ [3 mks]