

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF SCIENCE
IN
CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE:

CSE 352

COURSE TITLE:

HYDRAULICS

DATE: MONDAY 25TH APRIL 2022 TIME: 12.00 - 2.00 PM

INSTRUCTIONS:

- 1. This paper contains Four Questions
- 2. Answer Question One and any other TWO Questions only
- 3. Marks for each question are indicated in the parenthesis.
- 4. Formulae sheet is provided at the end of the Question paper
- 5. It is in the best interest of the candidate to write legibly
- 6. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 4 Printed Pages. Please Turn Over.

A rectangular channel whose bottom width is 4.0 m carries a discharge of Q = 3m³/sec, having Manning roughness coefficient of n = 0.02 and the channel bottom slope is S₀=0.004.

a) Compute the normal and critical depth	[8 marks]
b) Classify the flow regime using Froude Number, flow depth	and channel bed
slope	[7 marks]
c) Obtain the specific energy of this reach	[4 marks]
d) Calculate minimum specific energy	[2 marks]
e) Obtain the alternate depth	[4 marks]
f) Draw the specific energy curve for the above discharge	[5 marks]

OUESTION TWO

[20 Marks]

a) For a depth of 5 m in the symmetrical compound section shown in Fig. Q2. Assume the flood plains and the main channel have the same bottom slope of 0.001, and Manning n for the main channel and for the floodplain are 0.021 and 0.039 respectively. Determine the discharge through the compound channel

[14 marks]

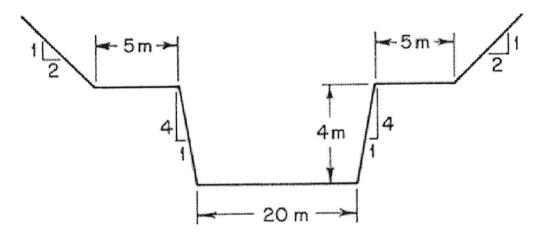


Figure Q2

b) A spillway has a discharge of 1.2 m³/s per m width occurring over it from a reservoir 5 m high. What depth will exist downstream of the hydraulic jump? [6 marks] Assume negligible losses over the spillway

OUESTION THREE

[20 marks]

a) A concrete lined circular channel of 2 m diameter has a bed slope of 1 in 1000. Determine the flowrate and velocity for i) maximum discharge condition ii) maximum velocity condition. Take C=50 [10 marks]

b) A weir is installed across a rectangular open channel thereby raising the flow depth from 1.2 m in a normal flow to 2 m at the weir. The width of the channel is 15 m and it is laid to a slope of 1 in 10000. Find an approximate length of the backwater curve considering the average velocity, average depth and average slope midway between the two sections. Take n = 0.012. [10 marks]

OUESTION FOUR

[20 marks]

- a) Water is flowing in a pipe of 150 mm diameter with a velocity of 2.5 m/s when it is suddenly brought to rest by closing the valve. Find the pressure rise assuming pipe is elastic, E = 206 GN/m², Poisson's ratio = 0.25 and bulk modulus for water = 2.06 GN/m². Pipe wall is 5 mm thick [4 marks]
- b) A single-acting reciprocating pump, running at 60 rpm., delivers 0.53 m³ of water per minute. The diameter of the piston is 200 mm and stroke length 300 mm. The suction and delivery heads are 4 m and 12 m respectively. Determine: (i) Theoretical discharge, (ii) Co-efficient of discharge, (iii) Percentage slip of the pump, and (iv) Power required to run the pump. [8 marks]
- c) A horizontal pipe of 75 mm diameter is joined by sudden enlargement to 100 mm diameter pipe. Water is flowing through it at a rate of 3 m³/min. Find the loss of head due to abrupt expansion and the pressure difference in the two pipes [4 marks]

FORMULAE SHEET

	rectangular	trapezoidal	triangular	circular	parabolic
	$ \begin{array}{c} B \\ \hline $	$ \begin{array}{c} B \\ \downarrow \\ \downarrow \\ b \end{array} $	B h	$D = \begin{pmatrix} B \\ \theta \end{pmatrix} h$	
flow area A	bh	(b+mh)h	mh³	$\frac{1}{8}(\theta - \sin\theta)D^2$	$\frac{2}{3}Bh$
wetted perimeter	b+2h	$b + 2h\sqrt{1 + m^2}$	$2h\sqrt{1+m^2}$	$\frac{1}{2}\theta D$	$B + \frac{8}{3} \frac{h^2}{B}$
hydraulic radius R _k	$\frac{bh}{b+2h}$	$\frac{(b+mh)h}{b+2h\sqrt{1+m^2}}$	$\frac{mh}{2\sqrt{1+m^2}}$	$\frac{1}{4} \left[1 - \frac{\sin \theta}{\theta} \right] D$	$\frac{2B^2h}{3B^2+8h^2}$
top width B	b	b + 2mh	2mh	$or \frac{(\sin \theta/2)D}{2\sqrt{h(D-h)}}$	$\frac{3}{2}Ah$
hydraulic depth D _s	h	$\frac{(b+mh)h}{b+2mh}$	$\frac{1}{2}h$	$\left[\frac{\theta - \sin \theta}{\sin \theta / 2}\right] \frac{D}{8}$	$\frac{2}{3}h$

Valid for
$$0 < \xi \le 1$$
 where $\xi = 4h/B$
If $\xi > 1$ then $P = (B/2) \left[\sqrt{1 + \xi^2} + (1/\xi) \ln \left(\xi + \sqrt{1 + \xi^2} \right) \right]$

$P = 2r\theta$	$h_2 = \frac{h_1}{2} \left(-1 + \sqrt{1 + 8Fr_1^2} \right)$
$A = r^2\theta - \frac{r^2\sin 2\theta}{2} = r^2\left(\theta - \frac{\sin 2\theta}{2}\right)$	$h_2 = \frac{-h_2}{2} + \sqrt{\frac{{h_1}^2}{4} + \frac{2q^2}{gh_1}}$
$n_{eq} = \sqrt{\frac{n_i^2 P_i}{\sum P_i}}$	$H_1 - H_2 = \frac{(h_2 - h_1)^3}{4h_1h_2}$
$l = \frac{\overline{E_2 - E_1}}{S_0 - S_e}$	$c = \sqrt{\frac{K'}{\rho}}$
$\frac{dy}{dx} = \frac{S_o - S_e}{\left(1 - \frac{V^2}{gy}\right)}$ $E = h + \frac{V^2}{2g}$	$\frac{1}{K'} = \frac{1}{K} + \frac{D}{Et}$
$E = h + \frac{V^2}{2g}$	$c = \sqrt{\frac{K}{\rho}}$
$\Delta P = \rho c u$	$\frac{1}{\lambda} = -2.10 \log_{10} \frac{K_s}{3.7D} + \frac{2.51}{R_e \sqrt{\lambda}}$