

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATION 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE OF BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE:

CSE 354

COURSE TITLE:

HYDROLOGY

DATE: FRIDAY 29TH APRIL 2022

TIME: 3.00 – 5.00 PM

INSTRUCTIONS:

- 1. This paper contains FOUR questions
- 2. Answer question ONE (compulsory) and any other TWO question
- 3. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

CSE 354 HYDROLOGY

QUESTION 1 [30 Marks]

(a) Briefly explain the importance of studying Hydrological Frequency analysis

[6 Marks]

(b) Differentiate between the following as used in hydrological frequency studies:

i. Plotting position and Return Period

[4 marks]

ii. Safety factor and Reliability

[4 marks]

(c) The mean of the annual maximum discharge for a 25-year data (1996-2020) of a river is 47.92cm³/s. The Standard deviation is 9.40cm³ /s. Estimate the magnitude of the 60-year flood using Gumbel's equation. [7 Marks]

(d) Use the Thornthwaite Equation to estimate the potential evapotranspiration (PET) for alfalfa crop grown at altitude 28^{0} N. Assuming a reduction factor $R_{\rm f}$ of 1.2 and the growing season is from March to July [9 Marks]

Rainfall	J	F	М	Α	М	J	j	Α	S	0	N	D
T _m ⁰ C	4	3	2.7	2.5	7	11	10	15	7	4	3	4.5

QUESTION 2 [20 Marks]

(a) Differentiate between the following

(i) Overland flow and Direct runoff

[4Marks]

(ii) Depression storage and Base flow

[4 Marks]

(b) Rainfall of magnitude 6.5 cm and 4.5 cm occurring on two consecutive 2-h duration on a Catchment of 30 km² provided the following hydrographs of flow at the outlet.

(i) Plot the hydrograph

[3 Marks]

(ii) Estimate the runoff depth

[7 Marks]

(iii) Estimate the φ index of the storm

[2 Marks]

Time start of rainfall (h)	-2	0	2	4	6	8	10	12	14	16	18
Observed flow (m3/s)	7	6	7.5	12.5	20	26	20	11	8	6	5

QUESTION 3 [20Marks]

(a) Distinguish between the following as used in groundwater studies

i. Confine and unconfined aquifer

[4 Marks]

ii. Specific storage and Specific yield

[4 Marks]

- (b) A confined aquifer has a total thickness of 20m with the original piezometric head being 65m. The aquifer is fully penetrated by a well of diameter 30cm and pumped at a rate of 2.5m³/min. Two observation wells at a distance of 130m and 150m from the pumping well has a hydraulic head of 59.5m and 60.0m respectively. Determine the coefficient transmissivity of the aquifer and the drawdown at the pumping well. [12 Marks]
- (c) An unconfined aquifer released 5 x 10⁵ m³ of water for a water drop of 2m over a horizontal area of 1km². The aquifer porosity is 40% and has a hydraulic conductivity 0f 0.002cm/sec. Compute the specific yield marks and the specific retention [3 Marks]

QUESTION 4 [20 Marks]

(a) Distinguish between Rating curve and Flow duration curve

[4 Marks]

(b) The data pertaining to stream-gauging operation at gauging site are given below. The rating Equation of the current meter is V = 0.6 N + 0.15 m/s. Calculate the discharge in the stream. [16 Marks]

Distance from the left		2	4	6	8	10	12	14	16
Water edge (m)		-	,	-				127	
Depth (m)		1	2	3	4	3.5	2	1.5	0
Revolutions at 0.2 of depth	0	60	80	140	160	120	90	65	0
Revolutions at 0.8 of depth	0	40	60	100	130	90	60	40	0
Duration of Observation (s)	0	140	145	146	145	140	145	144	0

You may find the following equation useful

 $a = \ 0.4923 + 0.01792 T_{e} - 0.0000771 T_{e}^{2} + 0.0000000675 T_{e}^{2}$