

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

MAIN EXAMINATION 2021/2022 ACADEMIC YEAR, SEMESTER ONE

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN MECHANICAL AND INDUSTRIAL ENGINEERING (FIFTH YEAR)

COURSE CODE: MIE 574E

COURSE TITLE: INTERNAL COMBUSTION ENGINES

DATE: 21-04-2022 TIME: 12:00-14:00

INSTRUCTIONS:

0 % 30 Q3

- 1. This paper contains FOUR questions
- 2. QUESTION ONE IS COMPULSORY
- 3. Attempt any TWO questions from the remaining.
- 4. Question ONE carries 30 marks and the REST 20 marks each.
- 5. Examination duration is 2 (TWO) HOURS

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

Determine:

- Stroke length (i)
- Swept volume (ii)
- Cubic capacity (iii)
- Clearance volume (iv)
- Total volume (v)
- Actual volume of air aspirated per stroke in each cylinder. (vi)

QUESTION FOUR (20Marks)

- a) Compare four stroke and two stroke internal combustion engines based on the following: (6 Marks)
 - Power stroke
 - Fly wheel ii.
 - Initial cost iii.
 - Rate of wear of mechanical parts iv.
 - Thermal efficiency ٧.
 - Volumetric efficiency vi.
- b) The swept volume of a diesel engine working on a dual cycle is 0.0053m³ and clearance volume is 0.00035m³. The maximum pressure is 65 bar. Fuel injection ends at 5% of the stroke. The temperature and pressure at the start of the compression are 80°C and 0.9 bar. Sketch PV diagram for the cycle and determine the air standard efficiency of the cycle. Take γ for air = 1.4 (14 Marks).

The efficiency of a dual combustion cycle is given by

$$\eta_{\text{dual}} = 1 - \frac{1}{(r)^{\gamma-1}} \left[\frac{\beta \cdot \rho^{\gamma} - 1}{(\beta - 1) + \beta \gamma(\rho - 1)} \right]$$

Where r is the compression ratio; β is the pressure ratio and ρ is the cut-off ratio.