

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATIONS

FOR

DIPLOMA IN MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE:

DME 066

COURSE TITLE:

ELECTRICAL ENGINEERING PRINCIPLES II

DATE: 21/04/2022

TIME: 12:00-2:00 PM

Instructions to candidates

1. This paper contains FOUR questions

- 2. Question one is compulsory and carries 30 marks
- 3. Attempt any other Two questions
- 4. Question 2, 3,4 each carry 20 marks

QUESTION 1 (compulsory) [30 mks]

a)	. Show that for a	series resonant	circuit, the resona	ant frequency is g	given by the	following expression	1.
			The second secon	1 2 6	,	on problem	

$$F_o=1/(2\pi)\sqrt{(\frac{1}{Lc})}$$
 [7mk]

- b). Explain the conditions for which the formula for parallel resonance reduces to the one in (a) above .
- c) A three phase motor operating off 400V system is developing 20kw at an efficiency of 0.87 p.u and power factor of 0.82. Calculate;
 - i) line current

[5mk]

ii) Phase current if the windings are delta connected.

[2mk]

- d) Three similar non-inductive resistors are connected in star to 415V, three phase supply. If the line current of 6A flows, calculate
 - i. The value of each resistor

[2mk]

ii. The phase power

[2mk]

iii. Total power consumed.

[2mk]

- e) A star connected three phase winding has a resistance of 50Ω per phase and is connected to a 415V, 3-phase supply. Calculate the phase and line currents. [4mk]
- f) Draw the diagrams for the following three phase windings clearly showing the relationship between line and phase parameters;
- i) Star connection

[1.5mk]

ii)Delta connection

[1.5mk]

QUESTION 2

a) Show that complex impedance is given by;

$$Z = R + j(2\pi fl - (1/(2\pi fc))$$

[5mk]

b) In R-L-C series circuit $R = 15\Omega$, $X_L = 100 \Omega$ and $X_C = 120 \Omega$. The voltage of supply is 200V. Calculate;

i. The impedance in polar form	[2 mk]					
ii The current	[2 mk]					
iii. The phasor diagram.	[1 mk]					
b) An electrical device takes 5 KVA at p.f of 0.7 lagging from a 400V, 50HZ.						
c) Supply. Determine;						
i) Phasor diagram	[1mk]					
ii) useless power	[3mk]					
iii) Power dissipation	[3mk]					
iv) Current and its active and reactive components	[3mk]					
QUESTION 3						
a) Explain the meaning of an electric filter.	[2mk]					
b) State FOUR characteristics of a salient electric filter.	[4mk]					
c) Using sketches differentiate between the one port and two port networks.	[4mk]					
d) i. state Thevenin theorem.	[2mk]					
ii. Determine and sketch the equivalent Norton's Generator given that;						
$E_T = 20v < -20^{\circ}$						
$Z_T = 5k\Omega < 45^{\circ}$	[4mk]					
iii Determine and sketch the equivalent Thevenin Generator given that;						
$I_N = 4mA < -65^0 Z_N = 5k\Omega < 45^\circ$	[/ml-]					
	[4mk]					

QUESTION 4

a) An R-C circuit consisting of $10.7\mu F$ capacitor in series with 150Ω resistor is connected to 250v, 50Hz supply. Determine:

i. The current

ii. The power factor [3mk]

iii. The reactive power [3mk]

b) List three requirements of a balanced three phase set.

[3mk]

[6mk]

c) Assuming a star connected three phase winding, relate the line and phase voltages and currents and hence show that the total power in a three phase system is given by:

 $p = 1.732 V_L I_L \cos \phi$

[5mk]