

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATIONS

FOR THE DEGREE OF OF TECHNOLOGY EDUCATION IN ELEC

BACHELOR OF TECHNOLOGY EDUCATION IN ELECTRICAL AND ELECTRONIC ENGINEERING

COURSE CODE: TEE 221

COURSE TITLE: ELECTRICAL MEASUREMENTS

DATE: WEDNESDAY, APRIL 27TH, 2022.

TIME: 12:00 - 2:00 PM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other TWO (2) questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

Figure 1

- (b) In the circuit of Figure 2 (a), a multimeter of sensitivity $5k\Omega/V$ and (6mks) range 0-10V is used to measure voltage across $10k\Omega$ resistance as shown in Figure 2(b). Determine:
 - i) the measured voltage reading.
 - ii) If second multimeter of sensitivity $25k\Omega/V$ is used, determine the voltage reading and comment on the results for both cases.

(c) i) State the operating principle of a strain gauge transducer.

(6mks)

- ii) A steel bar of width 2cm and thickness 1cm, and Young's modulus of $2 \times 10^8 kN/m^2$, is subjected to a tensile axial load of 20kN. A strain gauge of gauge factor 2 and resistance 120Ω is bonded longitudinally on the bar. Determine the percentage change in resistance of the strain gauge.
- (d) State two benefits of using digital storage oscilloscope over the (2mks) analogue storage oscilloscope

Question Three (20mks)

- (a) With the aid of a well labelled circuit diagram, describe how a potentiometer transducer can be used with a bellows to measure changes in pressure levels.
- (b) An iron-constantan thermocouple is to be used to measure temperatures between 0 and 400°C. If the e.m.f. at $150^{\circ}C = 7.268 \, mV$; e.m.f. at $400^{\circ}C = 21.846 \, mV$, determine the non-linearity error as a percentage of the full-scale reading at $150^{\circ}C$ if a linear relationship is assumed between e.m.f. and temperature over the