

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN MECHANICAL AND INDUSTRIAL ENGINEERING

COURSE CODE: MIE 451

COURSE TITLE: INDUSTRIAL MEASUREMENTS AND INSTRUMENTATION

DATE: Tuesday, April 19th, 2022

TIME: 3.00-5.00 PM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other THREE (3) questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

Question 1 is compulsory.

1.	(a) State any two advantages of electronic measurement.	(2mks)	
	(b) State and explain static and dynamic characteristics of Instruments	(4mks)	
	(c) Using a block diagram, describe a generalized measurement system and the f	escribe a generalized measurement system and the functions	
	of each element.	(3mks)	
	(d) Explain 3 sources of errors in instruments	(3	
	mks).		
	(e) In a test on a Bakelite sample at 20 kV, 50 Hz by a Schering Bridge, having a		
	standard capacitor of 106 pF, balance was obtained with a capacitance of 0.35 μI	∃ in	
	parallel with a non-inductive resistance of 318 Ω , the non-inductive resistance in the		
	remaining arm of the bridge being 130 Ω . Determine		
	(i) Capacitance	(3mks)	
	(ii) Power factor	(3mks)	
	(iii) Equivalent series resistance.	(3mks)	
	With the aid of a neat and well labelled diagram of a Maxwell Wien Bridge, derive the		
	expression of how an inductance of an unknown value could be calibrated.	(7mks)	
	(g) Define a wave analyzer.	(2mks)	
2.	(a) What is a Transducer?	(1mk)	
	(b) (i) Explain various classifications of transducers.	(2	
	mks).		
	(ii) State the key requirements of good transducers.	(2 mks).	
	(iii) Why is mercury-in-glass not preferred in measuring temperature?	(2mks)	
	(c) A thermocouple circuit uses Chrome- Alumel thermocouple which gives an emf of		
	35mV when measuring a temperature of 800° C with reference temperature of 0° C. The		
	ance of the meter coil R_m is 50 Ω and a current of 0.1 mA gives full scale deflection.		
	The resistance of junction and leads, R_e is 12 Ω . Calculate.		
	(i) The resistance of the series resistance if a temperature of 800° C is to give full		
	deflection.	(2 mks)	
	(ii) The approximate error due to rise of 1.25 Ω in $R_{e.}$		
	(2mks)		

- (iii) The approximate error due to rise of 10° C in the copper coil of the meter. The resistance temperature coefficient of the coil is $0.0045/^{\circ}$ C. (2mks)
- (d) What are thermopiles and where are they used? (2 mks)
- (e) With the help of diagrams, describe the working principle and application of a linear Variable Differential Transformer (5 mks).
- 3. (a) With the help of a block diagram, describe the building block of a digital instrument. (3mks)
 - (b) Using a clearly labelled block diagram of a basic digital multimeter, describe how current and resistance are measured. (6 mks).
 - (c) Using a block diagram of microprocessor based instrument, explain how impedance measurement can be obtained. (6 mks).
 - (d) A barium titanate pickup has the dimensions of 5 mm by 5 mm by 1.25 mm. The force acting on it is 5N. The charge sensitivity of barium titanate is 150 pC/N and its permittivity is 12.5×10^{-9} F/m. If the modulus of elasticity of barium titanate is 12×10^6 N/m². Calculate the strain, the charge and capacitance of the crystal. (5mks).
- 4. (a) Draw Wheatstone's bridge and describe how it is used to measure resistance under balanced conditions. (5mks).
 - (b) With reference to (a) above, given that R1 and R2 have a common point with the switch and connected to positive terminal of DC supply while R3 and Rx have a common point with the neutral of the DC supply.

Calculate Rx where R1=10k Ω , R2=15k Ω and R3=40k Ω . (3mks)

- (c) State the limitations of Wheatstone's bridge (3mks).
- (d) A Maxwell Bridge is used to measure the inductive impedance. The bridge constants at balance are: C1= 0.01 μ F, R1=470 $k\Omega$, R2=5.1 $k\Omega$, R3=100 $k\Omega$. Find the series equivalent of the unknown impedance. (5mks).
- (e) An ac bridge has the following constants. (Refer to Fig 1).

Arm AB – capacitor of 0.5 μF in parallel with 1 $k\Omega$ resistance.

Arm AD- resistance of 2 k Ω .

Arm BC- capacitor of 0.5 μF.

Arm CD- Unknown capacitor Cx and Rx in series.

Frequency - 1 kHz.

Determine the unknown capacitance and dissipation factor. (4 mks)

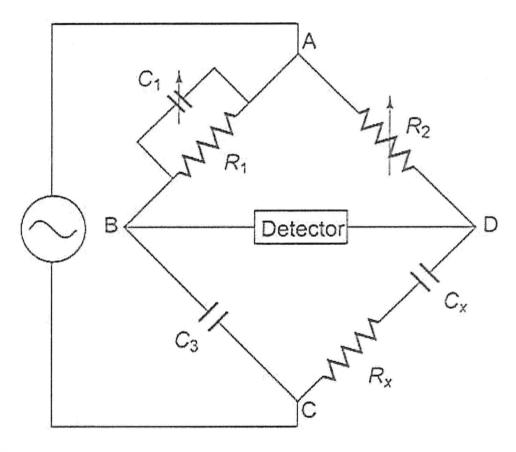


Fig 1.

- 5. (a) List the major components of a CRT. (2 mks).
 - (b) Draw the basic block diagram of an Oscilloscope and state the functions of each element. (6mks).
 - (c) List the advantages of using negative voltage in a CRO. (2mks).
 - (d) Describe with the help of a diagram the operation of Dual Trace Oscilloscope. (5 mks).
 - (e) State and explain the general classifications of digital displays. (5mks)