

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATIONS ENGINEERING

COURSE CODE: ECE 325

COURSE TITLE: SIGNAL AND SYSTEMS

DATE: FRIDAY, APRIL, 29TH, 2022

TIME: 3:00 - 5:00 PM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other TWO (2) questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 6 Printed Pages. Please Turn Over.

OUESTION ONE

a. State and express three properties of convolution.

6 marks

- b. Outline the following using suitable expressions.
 - Correlation of power signals. i.
 - Power spectral density. ii.

6 marks

c. If $f_1(t) \stackrel{\checkmark}{=} F_1(\omega)$

$$f_2(t) \stackrel{\longleftarrow}{\longleftarrow} F_2(\omega)$$

8 marks

- then $f_1(t)$ \bigotimes $F_2(t)$ $f_2(\omega)$ \longleftarrow $F_1(\omega)$ $F_2(\omega)$ d. (i) Define what is meant by a signal.
 - (ii) Distinguish between linear time invariant and time-invariant signals.

6 marks

e. State what is meant by system representation.

4 mark

OUESTION TWO

- a. State Four conditions of function f(t) used in applying the Fourier series representations inside the internal $-T/_2 \le t \le T/_2$
- b. Derive that the input x(t) is convolved with the impulse h(t) then the time response will be as 10 marks expressed y(t) = $\int_{\infty}^{p} h(t)x(t-\tau)d\tau$

OUESTION THREE

- Distinguish the following pairs of classes of signals.
- Periodic signals and non-periodic signals. i.
- Deterministic signals and random signals. ii.

3 marks

Energy signals and power signals. iii.

3 marks

b. Prove that if in time shifting the Fourier transform is $f(t) \stackrel{\frown}{----} F(\omega)$ Then for a constant time shift "to" the transform will be as follows:-

$$F(t-to) \stackrel{\checkmark}{\longrightarrow} F(\omega) e^{-2\pi f t}$$

11 marks

OUESTION FOUR

- With the aid of suitable frequency responses describe the operation of the following filters:
 - Ideal high -pass filter. i.
 - Ideal band-pass filter. ii.
 - Ideal band stop filter. iii.
- b. Derive to show that the Fourier transform of the output LTI is:

$$Y(\omega) = H(\omega) X(\omega)$$

When
$$y(t) = \int_{\infty}^{\infty} h(\tau)x (t - \tau)dt$$

5 marks

- c. If $x_1(t)$ and $x_2(t)$ are real -valued energy signals then write:
 - An expression for crosscorrelation A expression for autocorrelation ii.

3 marks

2 marks

Write three properties of correlation functions

3 marks

QUESTION FIVE

- a. If it is given that
 - $f(t) = e^{-3t} x(t)$ is passed through a filter whose cut off frequency is $\omega_c = 1$ radian/second: Prove 8 marks that this input signal is an energy signal
- b. The trigonometric Fourier series is given as $f(t) a_0 + 2 \sum_{n=1}^{\infty} a_n \cosh t + b_n \sinh t$ Represents a rectangular pulse with a duration of τ and a period T; the amplitude of the Analyse and show that the series may be expressed as:

$$f(t) = \frac{A\tau}{T} + \frac{2A\tau}{T} \sum \frac{sinn\omega\tau/2}{n\omega\tau/2} \ cosn\omega t$$

12 marks