

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE: ECE321

COURSE TITLE: CONTROL SYSTEMS I

DATE:TUESDAY, APRIL, 26TH, 2022

TIME: 12:00 - 2:00 PM

INSTRUCTIONS TO CANDIDATES

- This Paper Consists of FIVE Questions.
- Attempt Question ONE and TWO other Questions (Do not attempt more than expected).
- Allow ONE hour for Question ONE and another ONE hour for TWO other Questions.
- Question ONE carries 30 MARKS and all other Questions carry 20 MARKS each.
- A BONUS will be awarded for clean and well-organized work.
- Candidates are reminded to STRICTLY adhere to the Examination Rules and Regulations.
- REQUIRED: Answer Booklet and Calculator.

QUESTION ONE (COMPULSORY) (30 MARKS)

- 1. Explain the following terminologies as applied in control systems
 - i. Control system
 - ii. Controller
 - iii. System
 - iv. Feedback Signal

[4 Marks] [6 Marks]

- 2. Discuss at least 3 classifications of control systems.
- Differentiate between the necessary condition and sufficient condition for stability in Routh-Hurwitz Stability Criterion. [4 Marks]
- 4. Differentiate between time response and frequency response in control systems.

[4 Marks]

5. Simplify the block diagram using the block diagram reduction rules and determine the transfer function of the system. [4 Marks]

6. Consider a first-order system shown below, show that for unit step signal and unit ramp signal inputs, the unit response, c(t) has both the transient and the steady-state terms and the unit response, c(t) is an exponentially decaying signal for unit impulse input

[6 Marks]

- 7. State if the following closed loop poles are stable or unstable
 - i. Closed-loop poles negative and real
 - ii. Closed-loop poles complex with negative real parts
 - iii. Closed-loop poles positive and real
 - iv. Closed-loop poles complex with positive real parts

[2 Marks]

QUESTION TWO (20 MARKS)

1. Highlight at least 4 properties of signal flow graphs

[4 Marks]

2. The block diagram below presents the armature type speed control of a DC motor, determine the transfer function and represent the block diagram in a signal flow graph.

[6 Marks]

3. Based on Mason's gain formula compute the transfer function from the signal flow graph below.

[4 Marks]

4. In a unity feedback control system, the open loop transfer function is given by

$$G(s) = \frac{k}{s(s+2)(s+4)}$$

Using Routh Hurwitz Criterion, determine the range of K for which the given system is stable. [6 Marks]

QUESTION THREE (20 MARKS)

1. Discuss at least 2 types of systems based on stability.

[4 Marks]

2. Find the steady state error of an input signal $r(t) = \left(5 + 2t + \frac{t^2}{2}\right)u(t)$ of a unity negative feedback control system with.

$$G(s) = \frac{5(s+4)}{s^2(s+1)(s+20)}.$$

[4 Marks]

3. Draw the root-locus of the feedback system whose open-loop transfer functions are given by.

$$G(s)H(s) = \frac{k}{s(s+2)(s+4)}$$

[8 Marks]

4. Discuss the effects of adding a pole or a zero to the root locus of a second- order system. [4 Marks]

QUESTION FOUR (20 MARKS)

1. List at least two advantages and disadvantages of static error coefficient method?

[4 Marks]

2. Consider the system shown in Figure 1 below. To improve the performance of the system feedback is added to this system, which results in Figure 2. Determine the value of K so that the damping ratio of the new system is 0.4. Compare the overshoot, rise time, peak time and settling time and the nominal value of the systems shown in Figures 1 and 2.

Figure 2

[8 Marks]

3. Draw the Bode magnitude and phase plot of the open-loop transfer function G(s)H(s)and determine gain margin, phase margin and absolute stability if

$$G(s)H(s) = \frac{1}{s(s+1)}$$

[8 Marks]

QUESTION FIVE (20 MARKS)

- 1. Using appropriate equations and block diagram, discuss the effect of feedback on the following in control systems.
 - Overall Gain i.
 - ii. Sensitivity
 - iii. Stability
 - Noise iv.

[8 Marks]

2. In a table format contract between open loop and closed loop control systems.

3. Using Nyquist criterion, determine the stability of a feedback system whose openloop transfer function is given by.

$$G(s)H(s) = \frac{55}{s(s+2)(s+4)}$$

[8 Marks]