

(University of Choice)
MASINDE MULIRO UNIVERSITY OF
SCIENCE AND TECHNOLOGY

(MMUST)

MAIN CAMPUS UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATIONS

FOR THE DEGREE OF

BACHELOR OF SCIENCE IN ELECTRICAL COMMUNICATION ENGINEERING

COURSE CODE: ECE 224

COURSE TITLE: ELECTRICAL MEASUREMENTS

DATE: THURSDAY, APRIL, 28TH, 2022.

TIME: 8:00 - 10:00 AM

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other TWO (2) questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 5 Printed Pages. Please Turn Over.

Question One (30mks)

- (a) i) With the aid of a block diagram, describe the elements of a (8mks) measurement system.(6mks)
 - ii) Explain the following static characteristics of instruments (2mks)
 - i) Precision
 - ii) Repeatability
 - iii) Zero drift
 - iv) Resolution
- (b) An iron-constantan thermocouple is to be used to measure (4mks) temperatures between 0 and 400°C. If the e.m.f. at $150^{\circ}C = 7.268 \, mV$; e.m.f. at $400^{\circ}C = 21.846 \, mV$, determine the non-linearity error as a percentage of the full-scale reading at $150^{\circ}C$ if a linear relationship is assumed between e.m.f. and temperature over the full range.
- (c) i) Explain how strain gauge load cells can measure the weight of (10mks) heavy duty trucks on a weighbridge.
 - ii) A strain gauge with a gauge factor of 4 and resistance of 350Ω is bonded on an Aluminium loadcell whose diameter is 5.6cm, length 30cm and Young's modulus $E = 70GN/m^2$. The strain gauge is connected into a bridge circuit with three other precision resistances each at 350Ω and supplied by +15V. If a weight of 4500N is exerted on the loadcell.

Calculate;

- i) the strain in the beam
- ii) the percentage change in resistance
- iii) the offset voltage of the bridge
- (d) Briefly describe how Lissajous patterns can be used to determine (8mks) the phase difference between two signals.

Question Two (20mks)

- (a) i) With the aid of sketches, explain the working principle of Hall effect sensors and state three industrial applications.
 - ii) Distinguish between Hall effect and magneto-resistive effect
 - iii) A specimen of silicon doped semiconductor of area $15 \text{mm} \times 1 \text{mm}$ and 1 mm thickness, has a hall coefficient of $3.55 \times 10^{-4} \text{m}^3/\text{Coulomb}$. Calculate the hall voltage when a current of 15 mA is flowing and the flux density is 0.48Wb/m^2 .

(b) The circuit diagram in Figure 2 shows Maxwell's inductance (4mks) capacitance bridge. Show that the unknown inductance and its internal resistance are given by:

(c) Briefly explain how a cathode ray oscilloscope can be used to (4mks) measure voltage and current.

Question Three (20mks)

(a) The Figure 3 shows the schematic diagram of a Wheatstone bridge (8mks) with values of the bridge elements. The battery voltage is 5V and its internal resistance negligible. The galvanometer has a current sensitivity of 10 mm/ μ A and an internal resistance of 100 Ω . Calculate the deflection of the galvanometer caused by the 5 Ω unbalance in arm BC.

Figure 3

- (b) With aid of a block diagram, explain the working of a Cathode ray oscilloscope
- (c) State and explain any four types of harmonic distortions (4mks)

Question 4 (20mks)

- (a) Discuss the benefits of using digital storage oscilloscope over the analogue storage oscilloscope. (6mks)
- (b) With the aid of a circuit diagram, explain how the Q-meter measures (6mks) the quality factor of an unknown coil at radio frequencies.
- (c) With the aid of a well labelled circuit diagram, describe how a Linear (8mks) variable differential transformer can be used to measure small mechanical displacements.

Question 5 (20mks)

- (a) With the aid of a well labelled block diagram, describe how current (10mks) and voltage measurements can be obtained with a digital multimeter.
- (b) A Piezoelectric crystal of charge sensitivity = 2pC/N, area = $1cm^2$, (6mks) 0.1 cm thickness and relative permittivity of 5 is subjected to a force of 0.01N. Two metal electrodes measure the changes in the crystal. Young's modulus of the material $9 \times 10^{10} Pa$. Determine:
 - i) the voltage across the electrodes
 - ii) the change in crystal thickness

Take: $\varepsilon_0 = 8.85 \times 10^{-12} F/m$

(c) State and explain two types of digital displays. (4mks)