

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST) MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF SCIENCE (ENGINEERING, PHYSICS, DISASTER PREPAREDNESS)

COURSE CODE:

SCH 101

COURSE TITLE: FUNDAMENTALS OF CHEMISTRY II (MAIN EXAMINATIONS)

DATE: 28/4/2022

TIME: 12.00- 2.00 PM

INSTRUCTIONS TO CANDIDATES

> Answer **ALL** questions

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of Printed Pages. Please Turn Over.

4

QUESTION ONE (17 marks)

- a) i) State the deviations to ideal gases that lead to and the Van der Waals equation (3 marks)
- ii) Compare the pressure predicted for 0.8 litre of 0.5 moles CO₂ at 273K using:
- I) the ideal gas equation

(2 marks)

II) Van der Waal's equation, a = 6.581 atm mol⁻² and b = 0.056 1 mol⁻¹

(2 marks)

- c) It takes nitrogen gas 2 minutes to diffuse through an orifice. How much time will methane gas take to diffuse through the same orifice in seconds (2 marks)
- g) i) Sketch the graphic representation of Boyle's law

(2 marks)

ii) State the difference between Avogadro law and Avogadros hypothesis

(3 marks)

h) Explain 2 postulates of the kinetic molecular theory

(3 marks)

QUESTION TWO (17 marks)

a) State Le Chatelier's principle and apply it to the following equilibrium

$$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g); \Delta H = -17 \text{ kcal}$$

(2marks)

- b) The value of K_p for the equilibrium; $2H_2O(g) + 2Cl_2\left(g\right) \rightleftharpoons 4 \; HCl\left(g\right) + O_2\left(g\right)$
- is 0.035 atm at 400°C when the partial pressures are expressed in atmospheres. Calculate the value of K_c for the same reaction. (3 marks)
- c) With the aid of examples, explain the terms
- i) Homogenous equilibrium

(2 marks)

ii) Heterogenous equilibria

(2 marks)

d) Explain the Arrhenius theory of acids and bases.

(2 marks)

- e) Find out the pH of a 0.1 M solution of sodium acetate in water: K_a of acetic acid is 1.8 x 10⁻⁶ (3 marks)
- f) Calculate the pH of a 0.05M solution of ammonium chloride. Dissociation constant of ammonium hydroxide is 1.8×10^{-5} (3 marks)

QUESTION THREE (15marks)

a) Define solubility of a salt

(2 marks)

- b) The K_{SP} of CaF_2 is 1.7 x 10^{-10} mol⁻³l⁻³ at 25 °C. Calculate the solubility of CaF_2 in 1 litre of water (3 marks)
- c) A cell is prepared by dipping a copper rod in 1M CuSO₄ solution and a nickel rod in 1M NiSO₄ solution. The standard reduction potentials of copper electrode and nickel electrode are 0.34 volt and -0.25 volt respectively.
- i) What will be the cell reaction?

(3 marks)

ii) Which electrode will be positive?

(2 marks)

iii) How will the cell be represented?

(2 marks)

d) Can a solution of 1M copper sulphate be stored in a vessel made of nickel metal?

Given that $E^{o}_{Ni, Ni2+} = 0.25$ volt and $E^{o}_{Cu, Cu2+} = -0.34$ volt. Explain your answer.

(3marks)

e) Calculate the electrode potentials (reduction potentials) of each of the following single electrodes at 25°C (3 marks)

(i) Sn $| Sn^{2+} a = 0.01$

 $E^{o}_{Sn,Sni2+} = 0.14 \text{ volt}$

(ii) Ag | AgCl, $Cl^{-}a = 0.0001$

 $E^{o}_{AgCl,Cl} = 0.22 \text{ volt}$

The electrode reaction expressed as reduction reaction is

Question 4 (19 marks)

a) i) What is osmotic pressure

(1 mark)

- ii) 300 cm^3 of an aqueous solution contains 1.56g of a polymer. The osmotic pressure of such solution at 270° C is found to be 2.57×10^{-3} bar. Calculate the molar mass of the polymer. R= $0.08314 \text{ lbarK}^{-1}\text{Mole}^{-1}$ (3 marks)
- b) Briefly state the difference between molality and molarity.

(2 marks)

c) Explain the following occurrences;

i) It takes longer for water to boil at Malindi than at Nyeri in Kenya

(2 marks)

ii) The freezing point of 0.1M NaCl_(aq) is lower than that of 0.1M CH₃CH₂OH_(aq) (2 marks)

d) Study the phase diagram below and answer the questions that follow

i) Describe the processes along RG

(1 mark)

ii) What is the significance of point G

(1 mark)

iii) Explain the transformation XY

(3 marks)

- e) i) Draw and explain a vapour pressure-composition diagram for ethanol and water solution (2 marks)
- f) Briefly use the boiling point-composition diagram below to describe fractional distillation (2 marks)

