

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER EXAMINATIONS FOR THE DEGREE

OF

BACHELOR OF SCIENCE (CHEMISTRY)

COURSE CODE:

SCH 341

COURSE TITLE:

CHEMICAL KINETS

DATE:

Monday, 25th April 2022

TIME: 12.00 noon- 2.00 PM

INSTRUCTIONS TO CANDIDATES

• Answer all the Questions

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (20 MARKS)

a) Define the following terms as used in Chemical kinetics

[5 marks]

- i. Order of a reaction
- ii. Transition state
- iii. Enzyme
- iv. Rate determining step
- v. Differential rate law
- b) For a reaction mechanism to be considered correct, what property must it demonstrate? [2 marks]

c) Show that $t_{1/2}$ for the first order reaction equals to 0.693/k

[3 marks]

- d) A first order reaction has a half-life of 20.0 mins.
 - i. Calculate the rate constant for this reaction

[3 marks]

ii. How much time is required for this reaction to be 75% complete?

[2 marks]

e) Derive the integrated rate law for type I second order reaction

[5 marks]

A→Products

QUESTION TWO (15 MARKS)

a) How is a simple reaction different from a complex reaction?

[2 marks]

- b) What is the reaction intermediate? Can intermediate be present in the rate law expression for the overall reaction? [3 marks]
- c) The reaction A+2B→C+2D is form is found to be first order in A and first order in B. A proposed mechanism for the reaction involves the following first step:

$$A+B \rightarrow I+D$$

(slow)

i. Write a plausible second step in a two-step mechanism

[3 marks]

ii. Is the second step slow or fast? Explain.

[3 marks]

d) The decomposition of nitrogen dioxide is a second order reaction with rate constants as follows: 522M⁻¹s⁻¹ at 592K and 755M⁻¹s⁻¹ at 603K. Calculate E_a and Log A of the reaction.

[4 marks]

QUESTION THREE (20 MARKS)

- a) What is the steady-state approximation and when is this approximation employed? [3 marks]
- b) What is a transition state? How is the concept of a transition state used in activated complex theory? [3 marks]
- c) Consider the following mechanism for ozone decomposition:

2