(University of Choice) ## MASINDE MULIRO UNIVERSITY OF #### SCIENCE AND TECHNOLOGY (MMUST) Main campus #### **UNIVERSITY MAIN EXAMINATIONS** 2021/2022 ACADEMIC YEAR ### THIRD YEAR SECOND SEMESTER EXAMINATIONS #### FOR THE DEGREE OF # BACHELOR OF SCIENCE AND EDUCATION (SCIENCE) COURSE CODE: SCH 312 COURSE TITLE: RADIATION AND NUCLEAR CHEMISTRY DATE: 20th April, 2022 / TIME: 8 a.m-10a.m #### **INSTRUCTIONS TO CANDIDATES** - Answer all the Questions - Attached find periodic table TIME: 2 Hours MMUST observes ZERO tolerance to examination cheating This Paper Consists of 4 Printed Pages. Please Turn Over. #### **QUESTION ONE (18 MARKS)** - a) Define the following terms and give examples where applicable: - i) Positron production (2 marks) - ii) Gamma-ray production (2 marks) - iii) Electron capture (2 marks) - iv) Stable light nuclides have about equal numbers of neutrons and protons. What happens to the neutron-to-proton ratio for stable nuclides as the number of protons increases? (1 mark) - v) Nuclides that are not already in the zone of stability undergo radioactive processes to get to the zone of stability. If a nuclide has too many neutrons, which process(es) can the nuclide undergo to become more stable? Answer the same question for a nuclide having too many protons. (2 marks) - b) Complete the following nuclear equations.(3 marks) - i) ${}^{14}_{7}N + {}^{4}_{2}He \rightarrow ? + {}^{1}_{1}H$ - ii) $^{238}_{92}U+? \rightarrow ^{247}_{99}Es + 5^{1}_{0}n$ - iii) $? + {}_{1}^{2}H \rightarrow {}_{93}^{239}Np + {}_{0}^{1}n$ - c) Write nuclear equations for: - i) Alpha emission by plutonium-239, one of the substances formed in nuclear power plants. (2 marks) - ii) Beta emission by sodium-24, used to detect blood clots. (2 marks) - iii) What is nuclear transformation? (1 mark) - iv) Give an example of nuclear transformation. (1 mark) #### **QUESTION TWO (18 MARKS)** a. The table shows the steady increase in the neutron-to-proton ratios of the most abundant isotopes of the elements in group 15 on the periodic table; ccomplete it by filling the missing protons, neutrons and neutron to proton ratios (3 Marks) | Element | Number of neutrons | Number of protons | Neutron to proton ratio | |---------------|--------------------|-------------------|-------------------------| | Nitrogen, N | Hourons | protons | 1 to 1 | | Phosphorus, P | 16 | 15 | | | Arsenic, As | 42 | | 1.27to 1 | | Antimony, Sb | 70 | 51 | | | Bismuth, Bi | 126 | | 1.52 to 1 | - b. Describe the contribution of the following scientists in the discovery of radioactivity: - i) H. Becquerel. (2 marks)- - ii) Marie Curie and Pierre Curie. (2 marks) - c. All radioactive decay processes follow first-order kinetics. What does this mean? (1 mark) - i. What happens to the rate of radioactive decay as the number of nuclides is halved? (1 mark) - ii. Write the first-order rate law and the integrated first-order rate law. Define the terms in each equation. (4 marks). - iii. What is half-life? (1 mark) - iv. Give the mathematical expression for half-life in radioactive decay. Define the terms in the equation. (2 marks) - v. A certain active substance (which has no radioactive parent) has a half-life of 8.0 days. What fraction of the initial amount will be left after 16 days? (2 marks) # **QUESTION THREE (19 MARKS)** - **a.** Radiotracers are used in the medical sciences to learn about metabolic pathways. What are radiotracers? Give examples (4 marks) - b. - i. Nuclear fusion and nuclear fission are two exothermic nuclear processes. Differentiate between the two. (2 marks) - ii. How does the energy associated with fission or fusion processes compare to the energy changes associated with chemical reactions?(2 marks) - c. - i. How does a nuclear power plant produce electricity? (3 marks) - ii. Discuss the Chernobyl disaster of 1986 (4 marks) - iii. Explain what has been happening at the Chernobyl power plant since Russian invasion of Ukraine on 24th February, 2022 and how the war is affecting our economy.(4 marks) #### **QUESTION FOUR (15 MARKS)** - a. Give the other names for the following series, and discuss the steps in the thorium series (9 marks) - i. Uranium series - ii. Thorium series - iii. Actinium series - b. The biological effects of a particular source of radiation depend on several factors. Explain. (4 marks) - c. Write balanced equations for each of the following processes. - i. ${}^{11}_{6}C$ produces a positron. (1 mark) - ii. ${}^{214}_{83}Bi$ produces a β -particle. (1 mark) | | | MAIN-
ELEM | GROUI
IENTS | 0 | Pe | Periodic Table of the Elements MAIN-GROUP ELEMENTS | | | | | | | | | | | | | | | |--------|---------------------------|--------------------------|--------------------------|--------------------------|--|---|--------------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|---------------------------|--------------------------|--------------------|--------------------------|--| | | | 1A
(1) | |) | Metals (main-group) Metals (transition) Metals (inner transition) Metalloids | | | | | | | | | 8A
(18)
2 | | | | | | | | | 1 | H
1.008 | 2A
(2) | | Nonmetals | | | | | | | | | | 4A
(14) | 5A
(15) | 6A
(16) | 7A
(17) | He
4.003 | | | | 2 | 3
Li
6.941 | 4
Be
9.012 | | | | | | | | | | | | | 7
N
14.01 | 8
O
16.00 | 9
F
19.00 | 10
Ne
20.18 | | | | 3 | 11
Na
22.99 | 12
Mg
24.31 | 3B
(3) | 4B
(4) | 5B
(5) | 6B
(6) | ISITION
7B
(7) | (8) | ENTS -
- 8B -
(9) | (10) | 1B
(11) | 2B
(12) | 13
Al
26.98 | 14
Si
28.09 | 15
P
30.97 | 16
S
32.07 | 17
CI
35.45 | 18
Ar
39.95 | | | Period | 4 | 19
K
39.10 | 20
Ca
40.08 | 21
Sc
44.96 | 22
Ti
47.88 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | 26
Fe
55.85 | 27
Co
58.93 | 28
Ni
58.69 | 29
Cu
63.55 | 30
Zn
65.39 | 31
Ga
69.72 | 32
Ge
72.61 | 33
As
74.92 | 34
Se
78.96 | 35
Br
79.90 | 36
Kr
83,80 | | | | 5 | 37
Rb
85.47 | 38
Sr
87.62 | 39
Y
88.91 | 40
Zr
91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Tc
(98) | 44
Ru
101.1 | 45
Rh
102.9 | 46
Pd
106.4 | 47
Ag
107.9 | 48
Cd
112.4 | 49
In
114.8 | 50
Sn
118.7 | 51
Sb
121.8 | 52
Te
127.6 | 53

 126.9 | 54
Xe
131.3 | | | | 6 | 55
Cs
132.9 | 56
Ba
137.3 | 57
La
138.9 | 72
Hf
178.5 | 73
Ta
180.9 | 74
W
183.9 | 75
Re
186.2 | 76
Os
190.2 | 77
Ir
192.2 | 78
Pt
195.1 | 79
Au
197.0 | 80
Hg
200.6 | 81
TI
204.4 | 82
Pb
207.2 | 83
Bi
209.0 | 84
Po
(209) | 85
At
(210) | 86
Rn
(222) | | | | 7 | 87
Fr
(223) | 88
Ra
(226) | 89
Ac
(227) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | 110 (269) | 111 (272) | 112 (277) | As of mid-1999, elements 110 through 112 have not yet been named. | | | | | | | | | INNER TRANSITION ELEMENTS | - Learning Co | | 58
Ce
140.1 | 59
Pr
140.9 | 60
Nd
144.2 | 61
Pm
(145) | 62
Sm
150.4 | 63
Eu
152.0 | 64
Gd
157.3 | 65
Tb
158.9 | 66
Dy
162.5 | 67
Ho
164.9 | 68
Er
167.3 | 69
Tm
168.9 | 70
Yb
173.0 | 71
Lu
175.0 | | | | | | | 7 Actinides T | | | 90
Th
232.0 | 91
Pa
(231) | 92
U
238.0 | 93
Np
(237) | 94
Pu
(242) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | 103
Lr
(260) | | | |