

(University of Choice)

MASINDE MULIRO UNIVERSITY OF

SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER EXAMINATIONS

FOR DIPLOMA IN ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE CODE: DEE 082

COURSE TITLE: CONTROL SYSTEMS II

DATE: Tuesday 19th April, 2022 **TIME:** 8.00 A.m – 10.00 A.m

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 3 Printed Pages. Please Turn Over.

Question One [30 Marks]

a. Define the following terms as used in signal flow graphs

•	D .1	graphs.	
1.	Path		F1 1.7
ii	Node		[1 mark]
			[1 mark]
111.	Branch		
iv	Gain		[1 mark]
			[1 mark]
V.	Loop		
	1		[1 mark]

- b. With the aid of a relevant diagram provide the circuit analysis for the Lag-Lead compensator. [2 marks]
- c. Consider the system shown below. Given that k = 1, c = 1 and the time constant $\tau = 0.2$, find the PI controller gains such that $\zeta = 0.7071$.

d. A PID controller is inserted in series with a system having a transfer function below. The system has unity feedback. Find the gain constants of the PID controller required to locate the closed-loop poles at s = -50, $s = -4 \pm j5$. [6 marks]

$$G(s) = \frac{10}{(s+1)(s+2)}$$

a. Design a lag compensator for the system to meet the following specifications: $K_v = 5$ sec⁻¹, Phase margin at least 40⁰, Gain margin at least 10dB [12 marks]

$$G(s) = \frac{1}{s(s+1)(0.5s+1)}$$
The gain and phase of $G(j\omega)$ at certain frequencies is given below

Frague of (1.1) and at certain frequencies is given below:							
Frequency ω (rad/sec)	0.004	0.02	0.04	0.2	0.4	2	Δ
Gain (dB)	48	34	28	14	7	-16	21
Phase (degrees)	-90	-92	-93	-107	-123		-31
			75	-107	-123	-198	-229

Question Two [20 Marks]

a. List the four general effects of lead compensation in Nyquist system design.

[2 marks]

b. Consider the continuous system below in the figure below. Showing all steps followed you are required to construct the root locus hence predict the stability of the closed-loop system. [8 marks]

c. Construct the db magnitude-phase angle plot for the continuous-time open-loop transfer function $GH = \frac{2}{s(1+s)(1+s/3)}$ [10 marks]

Question Three [20 Marks]

a. Two identical networks, simple voltage dividers, of the form given in the figure below are to be cascaded and used as the control elements in the forward loop of a control system. Develop its signal flow graph and work out the transfer function [10 marks]

b. Construct the dB magnitude-phase angle plot for the open-loop transfer function [10 marks]

$$GH = \frac{4(s+0.5)}{s^2(s^2+2s+4)}$$

Question Four [20 Marks]

- a. Find the Nyquist Stability Plot for GH(s) = 1/s(s-1) and comment on its stability.

 [5 marks]
- b. Determine the value of the gain factor K for which the system with the open-loop transfer $GH = \frac{K}{s(s+2)(s+4)}$ has closed-loop poles with a damping ratio $\xi = 0.5$ [6 marks]
- c. Obtain the phase and gain margins of the system shown in Figure 4c for the two cases where K = 10 and K = 100.

Question Five [20 Marks]

- a. Compute the values of $P(s) = 1/(s^2 + 1)$ for $s_1 = 2$, $s_2 = j4$, and $s_3 = 2 + j4$.

 [3 marks]
- b. Map the imaginary axis in the s-plane onto the P(s)-plane, using the mapping function $P(s) = s^2$. [5 marks]
- c. Design a compensator for the system below such that the static Velocity Error Constant $K_v = 20 \text{ sec}^{-1}$, the Phase Margin is at least 45° and the Gain Margin at least 10dB.

[12 marks]

$$G(s) = \frac{4}{s(s+2)}$$

The gain and phase of $G(j\omega)$ at certain frequencies is tabulated below:

Frequency ω (rad/sec)	0.01	0.05	0.4	1	ies is tuo	diated 0	CIOW.		
	0.01	0.05	0.1	0.5		5	10	50	100
Gain (dB)	6	32	26	10	-	17	10	50	100
		32	20	12	5	-17	-28	-56	-68
Phase (degrees)	-90	-91	-93	-104	117	150	1.60		-
				-104	711/	-158	-169	-178	-179