

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2014/2015 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DIPLOMA IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: DCE 057

COURSE TITLE: MATHEMATICS I

DATE: 18TH DECEMBER 2014 TIME: 11.00AM – 1.00PM

INSTRUCTIONS:

- 1. Answer Question **ONE** and any other **THREE** questions
- 2. Examination duration is **2 Hours**

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 3 Printed Pages. Please Turn Over.

Question one (30 mks)

a.(i) Find the number of inversions in the permutations of; (2 mks)

1. (3 4 1 5 2)

2. (4 2 5 3 1)

Classify each of the permutations as even or odd.

(2 mks)

ii. find all the values of Λ for which det(A)=0,

$$A = \begin{pmatrix} \Lambda - 1 & -2 \\ 1 & \Lambda - 4 \end{pmatrix}$$
 (2 mks)

b. Given that f(x) = 5x + 1, $g(x) = \frac{1}{x}$ and h(x) = 2x - 5, solve for x in the equation

$$f \circ g^{-1}(x) = h^{-1}(x)$$
 (4 mks)

c. If $x + \frac{1}{x} = 1$, show that $x^2 + \frac{1}{x^2} = -2$

what is the value of
$$x^5 + \frac{1}{x^5}$$
 (4 mks)

d. Solve the inequality $\frac{4-x}{1x+3} < 3$

e. If $^{n}P4=12x^{n}P2$,

ii. Solve for n in
$$^{n}c2=3$$
 (3 mks)

f. Show that A.(B+C)=A.B+A.C

g. If R(u) = x(u)j+z(u), where x,y and z are differentiable functions of a u.Show that;

$$\frac{\delta R}{\delta U} = \frac{\delta x}{\delta u} I + \frac{\delta y}{\delta u} J + \frac{\delta z}{\delta u} K \tag{3 mks}$$

h. Express in
$$\frac{2+3i}{1+2i}$$
 the form $p+iq$; hence find $|p+iq|$ (3 mks)

Question two (10 mks)

A right circular cone has its vertex at the point (2, 1, 3) and the centre of its plane face at the point (1, -2, 2). A generator of the cone has equation r=(2i+j+3k)+(i-j-k). Find the radius of the base of the cone and hence its volume. (10 mks)

Question three (10 mks)

Given that (x+1) and (x-2) are factors of expression $f(x)=x^3+ax^2+b$ find the values of a and b. What is the other factor. (10 mks)

Question Four (10 mks)

a. Obtain the binomial expansion of $(1-2x)^5$. Use your expansion to evaluate $(0.95)^5$ correct to 5 decimal places. (4 mks)

b. If
$$\int_{1}^{a} 3(x+1)^{2} \delta x = a^{3} + 11$$
 find the values of a. (3 mks)

c. Differentiate from first principles

$$f(x) = x^3 - 2x \tag{3 mks}$$

Question five (10 mks)

- a. Show that $\sin 3A = 3 \sin A 4 \sin^3 A$.
- b. Solve $2\cos\theta = \sin(\theta + 30^{\circ})$ giving the general values of θ .
- c. Solve the equation $2\cos 2\theta \sin \theta = 1$ for values of θ between 0 and 2π .

Ouestion Six

a) Use Cramer's rule to solve for z without solving for x, y and w.

- b) If $\emptyset(x, y, 2)=3x^2y-y^3x^2$, find $\nabla \emptyset$ at the point (1, -2, -1)
- c) Complete the formulas below

i.
$$\nabla$$
 (Ø+4)=

ii.
$$\nabla$$
 (A+B)=

iii.
$$\nabla (\nabla \emptyset) =$$

iv.
$$\nabla$$
 (A+B)=