

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY

(MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS

2021/2022ACADEMIC YEAR

FIRST YEAR SECONDSEMESTERMAIN EXAMINATION FOR DIPLOMA IN GENERAL AGRICULTURE AND HORTICULTURE

COURSE CODE: DAG 060

COURSE TITLE: INTRODUCTION TO STATISTICS AND PROBABILITY

DATE: 28TH APRIL, 2022

TIME: 3-5PM

INSTRUCTIONS TO CANDIDATES

- Answer questions in section A and any TWO questions in section B.
- TIME: 2 Hours
- TOTAL MARKS=70

MMUST observes ZERO tolerance to examination cheating

This paper has 3 printed pages PLEASE turn over

SECTION A: Answer all questions (30 Marks)

QUESTION ONE

a) Define the following terms

(3mks)

- i) Statistics
- ii) Events
- iii) Sample
- b) Let X be a Random variable defined by the following distribution

X	-2	-1	2	3	4	5
P(X=x)	0.02	0.123	0.342	1	0.245	0.018

Find the missing probability, expected value of X and the variance of X

(7mks)

- c) A random variable X is binomially distributed with mean 6 and variance 4.2. Find $P(X \le 3)$ (3mks)
- d) Calculate the value of the mode for the following data using Grouping and analysis method (6mks)

Size of garment	28	29	30	31	32	33
No. of persons wearing	10	20	40	65	50	15

- e) Given that events A and B are independent, find $P(A \cap B)$ if P(A) = 0.3 and P(B) = 0.012 and hence find $P(A \cup B)$ (3mks)
- f) Calculate the mean if the mode of the data is 35 and the median is 41

(3mks)

g) Find the Spearman's rank correlation coefficient for the following data

(5mks)

0)	1								
X	10.2	9.6	15.7	10.5	20.0	25.3	12.5	18.0	17.2
Y	20.3	15.5	30.0	25.5	35.6	32.0	18.6	22.0	18.6

SECTION B: Answer any two questions (40 marks)

QUESTION TWO

a) Explain the difference between mean deviation and standard deviation

(4mks)

b) In the frequency distribution of 100 families given below; the number of families corresponding to expenditure groups 20 - 40 and 60 - 80 are missing from the table. However, the median is known to be 50.

Expenditure	0-20	20 – 40	40 – 60	60 - 80	80 – 100
No. of families	14	X	27	Y	15

- i) Find out the missing frequencies hence calculate the mode of the frequency distribution (10mks)
- ii) Then calculate the coefficient of variation

(6mks)

QUESTION THREE

a) State and explain three types of correlation

(6mks)

b) The following table shows the sales and demand of a certain product

Demand	18	20	30	40	46	54	60	80	88	92
Sales	42	54	60	54	62	68	80	66	80	88

Find the product-moment correlation coefficient and comment on your value (8mks)

c) From the following data find the index numbers by taking

(6mks)

- i) 2005 as base year
- ii) Using chain base method

Year	2005	2006	2007	2008	2009	2010	2011	2012
Price	60	62	65	72	75	80	82	85

QUESTION FOUR

a) The following data shows the number of bags of maize harvested by 12 famers from one acre of land.

20, 28, 12, 36, 36, 25, 36, 32, 50, 40, 21, 26

State the bags that most farmers harvested and also determine the average number of this harvest. (4mks)

- b) The mean and standard deviation of a set of 100 observation were worked out as 40 and 5 respectively by a computer which by mistake took the value 50 in place of 40 for one observation. Find the correct mean and variance (6mks)
- c) Use the table below to calculate β_0 and β_1 given that $Y = \beta_0 + \beta_1 x (10 \text{mks})$

X	20	15	44	31	12	6	35	41	66
Y	12	60	52	17	19	19	60	60	28

d)

QUESTION FIVE

- a) Show that the expected value and the variance of a Poisson distribution is λ (11mks)
- b) The number of industrial injuries per working week in a particular factory is known to follow a Poisson distribution with mean 0.5. Find the probability that in a particular week there will be;

i) No accidents

(2mk)

ii) At least two accidents

(3mks)

c) Obtain the mean absolute deviation (M.A.D) of the following values

(4mks)

6, 20, 35, 18, 16, 22, 13, 24, 18, 29, 21, 32, 15, 18, 22

9 45 V