

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR MAIN EXAMS

FOR THE BACHELOR DEGREE OF **ECONOMICS AND ECONONOMIC AND STATISTICS** FIRST YEAR SECOND SEMESTER EXAMINATIONS

COURSE CODE: ECO 104

COURSE TITLE: MATHEMATICAL ECONOMICS II

DATE:

TIME:

INSTRUCTIONS TO CANDIDATES

ATTEMPT QUESTION ONE AND ANY TWO QUESTIONS

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) The demand function for a commodity is given by the following

$$P = 50 - 0.5 Q$$

The cost of producing the commodity is made up of fixed cost of 200 shillings and variable cost of 0.2 shillings per unit.

i) Find the profit function (π) for the commodity

(4mks)

ii) Determine the output level at which

(5mks)

b) You are given the following production function:

$$Q = AK^{\infty} L^{\beta}$$

Where **Q** is output, **L** and **K** are, respectively, labour and capital inputs, and A, \propto and β are constants.

i) Determine the average product of labour and the average product of capital.

(4mks)

ii) Express the APL in terms of Q and L and APK I terms of Q and K

(4mks)

iii) Find the MPL and MPK.

Express these marginal products in terms of \mathbf{Q} , \mathbf{K} and β (in case of MPL) and

Q,L and \propto (in case of MPK)

(3mks)

iv) Compare the magnitudes of APL and MPL. Comment on your results.

s. (3mks)

C

i) Distinguish between integrand and integral

(4 marks)

ii) List any three examples of static equilibrium

(3 marks)

QUESTION TWO (20 MARKS)

a) The products of three different motor vehicle companies are represented by the following matrix.

_Г сотрапу 1	company 2	company 3	Saloons
3	10	0	Pick - ups
7	2	5	Trucks
0	1	15	Buses
L 6	0	13	Duses

- (2mks) i) State the company that has no buses
- ii) How many pick-ups do the companies have in total? (3mks)
- iii) How many saloons does company 3 have? (3mks)
- iv) How many saloons and trucks does company 2 possess? (3mks)
- b) Consider the following matrices:

$$A = \begin{bmatrix} 3 & 4 & 6 \\ 2 & 1 & 5 \\ 11 & 0 & 7 \\ 1 & 9 & 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 4 & 6 \\ 2 & 1 & 5 \\ 11 & 0 & 7 \\ 1 & 9 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix}$$

$$D = [d_{ij}]$$

$$i = 1,2,...,k$$

 $j = 1,2,...,r$

State the order of each of the matrices. i)

(3 mks)

What are the dimensions of B? ii)

(2mks)

- iii) How many rows and columns does **D** have?
- (2mks)
- What type of matrix ix matrix **B** (diagonal? Square? Or what?). (2mks) iv)

QUESTION THREE (20 MARKS)

a) Given the following optimization problem:

Optimize

z=xy

Subject to 2x+y=4

i) Write out the Lagrangian function for the problem. (3mks) (9mks)

Find the critical values of x, y and λ ii)

(2mks)

Find the stationary value of z. iii)

Determine whether the stationary value of z presents a maximum or a iv) minimum, by applying the second – order condition. (2mks)

QUESTION FOUR (20 MARKS)

a) you are given the following marginal revenue functions

$$MR = 2 + \frac{1}{4} Q$$

$$MR = 3 - 2Q + Q^2$$

$$MR = 20 + 3Q + Q^2$$

$$MR = (4)\sqrt{Q}$$

For each of the marginal revenue functions, determine:

i) The corresponding total revenue function.

(5mks)

ii) Total revenue for an output of **Q=4**.

(5mks)

iii) b) The marginal propensity to consume for some economy is 0.68. Determine the consumption function for the economy given that, consumption C = 9 when national income y = 0. (5mks)

QUESTION FIVE (20 MARKS).

- a) What do you understand by the following (6 marks)
 - i. A matrix
 - ii. Comparative statics
- iii. Input -output analysis
- b) Outline the assumptions of input output model (6marks)
- c) A firm produces two products q1,q2 with its profit (π) defined as
- $(\pi) = 5q1 + 3q2$. If the firm maximizes its profit subject to the following constraints

$$5q1 + 5q2 < 40$$

Using simplex algorithm, determine q1,q2 that will maximize profit and the optimal profit of the firm (8 marks)