University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

MAIN EXAMINATIONS
MAIN CAMPUS

FIRST YEAR END OF SECOND TRIMESTER EXAMINATIONS

FOR THE DEGREE

BACHELOR OF MEDICINE AND BACHELOR OF SURGERY

COURSE CODE: MBS 102

COURSE TITLE: MEDICAL PHYSIOLOGY I

DATE: 22ND APRIL 2022

TIME: 9AM

INSTRUCTIONS TO CANDIDATES

- 1) Section A MCQS (70marks):Answer <u>ALL</u> questions in this section and Select the best answer.
- 2) Section B SAQS (40marks): answer ALL questions in this section
- 3) Section C LAQS (40marks): answer ALL questions in this section

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 14 Printed Pages, Please Turn Over.

SECTION A (MCQS 70marks)

- 1. Through what "permissive action" do glucocorticoids accelerate gluconeogenesis during fasting?
 - a) Glucocorticoids stimulate the secretion of insulin, which activates gluconeogenic enzymes in the liver
 - b) Glucocorticoids inhibit the use of glucose by skeletal muscle
 - c) Glucocorticoids inhibit glycogenolysis
 - d) Glucocorticoids maintain the intracellular concentrations of many of the enzymes needed to carry out gluconeogenesis through effects on transcription
- 2. Which of the following substances is derived from pro-opiomelanocortin (POMC)?
 - a) Adrenocorticotropic hormone (ACTH)
 - b) Follicle-stimulating hormone (FSH)
 - c) Melatonin
 - d) Cortisol
- 3. Which step in steroid hormone biosynthesis is stimulated by adrenocorticotropic hormone (ACTH)?
 - a) Cholesterol → pregnenolone
 - b) Progesterone → 11-deoxycorticosterone
 - c) 17-Hydroxypregnenolone → dehydroepiandrosterone
 - d) Testosterone → estradiol
- 4. Secretion of oxytocin is increased by
 - a) Milk ejection
 - b) Dilation of the cervix
 - c) Increased prolactin levels
 - d) Increased extracellular fluid (ECF) volume
- 5. Which of the following substances acts on its target cells via an inositol 1,4,5-triphosphate (IP₃)–Ca²⁺ mechanism?
 - a) Somatomedins acting on chondrocytes
 - b) Oxytocin acting on myoepithelial cells of the breast
 - c) Antidiuretic hormone (ADH) acting on the renal collecting duct
 - d) Adrenocorticotropic hormone (ACTH) acting on the adrenal cortex
- 6. Secretion of which of the following hormones is stimulated by extracellular fluid volume expansion?
 - a) Antidiuretic hormone (ADH)
 - b) Aldosterone
 - c) Atrial natriuretic peptide (ANP)
 - d) 1,25-Dihydroxycholecalciferol
- 7. Which of the following hormones causes contraction of vascular smooth muscle?
 - a) Antidiuretic hormone (ADH)
 - b) Aldosterone
 - c) Atrial natriuretic peptide (ANP)
 - d) 1, 25-Dihydroxycholecalciferol

- 8. A major league baseball player takes human growth hormone to increase his performance. Which of the following is true regarding human growth hormone?
 - a) Secretion is stimulated by somatostatin and inhibited by ghrelin
 - b) It has a long half-life
 - c) It inhibits protein synthesis
 - d) It stimulates production of somatomedins (insulin-like growth factors I and II) by the liver, cartilage, and other tissues
- 9. The endogenous secretion of ACTH is correctly described in which of the following statements?
 - a) It shows a circadian rhythm in humans.
 - b) It is decreased during periods of stress.
 - c) It is inhibited by aldosterone.
 - d) It is stimulated by glucocorticoids
 - 10. During sleep there is a fall in the circulating level of ALL of the following EXCEPT
 - a) Cortisol.
 - b) Insulin.
 - c) Adrenaline.
 - d) Antidiuretic hormone
 - 11. Thyroid hormones, when secreted in excess, may cause an increase in ALL of the following EXCEPT
 - a) Peripheral vasodilation.
 - b) Frequency of defaecation.
 - c) Energy expenditure required for a given workload.
 - d) Duration of tendon reflexes
 - 12. Aldosterone secretion is increased by an increase in plasma of
 - a) Volume
 - b) Osmolality
 - c) Sodium
 - d) Potassium
 - 13. All of the following are TRUE of Growth hormone EXCEPT
 - a) Promotes positive nitrogen and phosphorus balance.
 - b) Secretion is under hypothalamic control.
 - c) Levels in the blood are higher in children than in adults.
 - d) Secretion surges during sleep.
 - 14. Pancreatic glucagon
 - a) Is produced by the beta cells of the islets of Langerhans.
 - b) Is an amine.
 - c) Output is inversely proportional to the blood glucose level.
 - d) Has a half-life in the circulation of 3-4 hours.

- 15. All of the following are TRUE of Cortisol EXCEPT
- a) Is bound in the plasma to an alpha globulin.
- b) Is inactivated in the liver and excreted in the bile.
- c) Injections lead to a rise in arterial pressure.
- d) Inhibits release of ACTH from the anterior pituitary gland
- 16. Releasing hormones produced in the hypothalamus
 - a) Are secreted by cells in the median eminence.
 - b) Pass down nerve axons to reach the pituitary gland.
 - c) Control the output of only one pituitary hormone.
 - d) Regulate the release of insulin.
- 17. Thyroid-stimulating hormone (TSH) secretion is increased in ALL of the following EXCEPT
 - a) After partial removal of the thyroid gland.
 - b) In infants born without a thyroid gland.
- c) When metabolic rate rises.
- d) In starvation
- 18. All of the following are TRUE of insulin EXCEPT
- a) Stimulates release of free fatty acids from adipose tissue.
- b) Secretion tends to lower the plasma potassium level.
- c) Facilitates entry of glucose into skeletal muscle.
- d) Facilitates entry of amino acids into skeletal muscle
- 19. The following are TRUE of pituitary gland EXCEPT
- a) Regulates activity in all other endocrine glands.
- b) Output of prolactin is regulated by hypothalamic releasing factors.
- c) Secretes antidiuretic hormone when blood osmolality rises.
- d) Has an intermediate lobe which secretes melanotropin
- 20. The following are TRUE of Thyroxine EXCEPT
 - a) Is stored in the follicular cells as thyroglobulin.
 - b) Increases the resting rate of carbon dioxide production.
 - c) Is essential for normal development of the brain.
 - d) Is essential for normal red cell production
- 21. Hormones secreted by the adrenal cortex
 - a) Include cholesterol.
 - b) Are less bound to plasma proteins.
 - c) Do not include sex hormones.
 - d) Are essential for the maintenance of life.

- 22. Destruction of the anterior pituitary gland causes all of the following EXCEPT
 - a) Amenorrhoea.
 - b) Diabetes insipidus.
 - c) Skin pallor.
 - d) Impaired ability to survive severe stress.
- 23 How do hormones from the thyroid and parathyroid regulate the calcium concentration of the blood?
 - a) Calcitonin lowers blood calcium; parathyroid hormone raises blood calcium.
 - b) Parathyroid hormone lowers blood calcium; calcitonin raises blood calcium.
 - c) Thyroxine and triiodothyronine together regulate calcium levels, as needs dictate
 - d) Both parathyroid hormone and the three thyroid hormones function to regulate blood calcium levels
- 24 The endocrine gland responsible for the body's circadian rhythm is the:
- a) Thymus gland.
- b) Pineal gland.
- c) Parathyroid gland.
- d) Pituitary gland.
- 25. Exposure to UV light directly facilitates which of the following?
- a) Conversion of cholesterol to 25-hydroxycholicalciferol
- b) Conversion of 25-hydroxycholicalciferol to 1,25-dihydroxycholicalciferol
- c) Transport of calcium into the extracellular fluid
- d) Formation of calcium binding protein
- 26 Parathyroid hormones directly
 - a) controls the rate of 25-hydroxycholicalciferol formation
 - b) controls the rate of calcium transport in the mucosa of the small intestine
 - c) controls the rate of formation of calcium binding proteins
 - d) controls the rate of formation of 1, 25-dihydroxycholicalciferol
- 27) Extracellular ionic calcium activity will be decreased within 1 min by which of the following?
 - a) Increase in extracellular phosphate ion activity
 - b) Increase in extracellular pH
 - c) Decrease in extracellular Pco2
 - d) All of the above
- 28) In controlling aldosterone secretion, angiotensin II acts on which of the following structures?
 - a) Zona glomerulosa
 - b) Zona fasciculata
 - c) Zona reticularis
 - d) Adrenal medulla

- 29 Which of the following statements about peptide or protein hormones is usually true?
 - a) They have longer half-lives than steroid hormones
 - b) They have receptors on the cell membrane
 - c) They have a slower onset of action than both steroid and thyroid hormones
 - d) They are not stored in endocrine-producing glands
- 30 Cortisol and growth hormone are most dissimilar in their metabolic effects on which of the following?
 - a) Protein synthesis in muscle
 - b) Glucose uptake in peripheral tissues
 - c) Plasma glucose concentration
 - d) Mobilization of triglycerides
- 31 Release of which of the following hormones is an example of neuroendocrine secretion?
 - a) Growth hormone
 - b) Oxytocin
 - c) Prolactin
 - d) Adrenocorticotropic hormone
- 32 Which of the following would most likely occur in the earliest stages of type II diabetes?
 - a) Increased insulin sensitivity
 - b) High circulating levels of C-peptide
 - c) Decreased hepatic glucose output
 - d) Metabolic acidosis
- 33 Which of the following statements about nerve cells is correct?
 - a) Typically, one copy of the same peptide is cut from the same precursor molecule
 - b) It is generally recognized that the cytosol provides the source of selective protein synthesis limited to neurotransmitters
 - c) Cytosolic proteins show significant modification or processing following their translation
 - d) Nuclear and mitochondrial proteins that are encoded by the cell's nucleus are targeted to their proper organelle by a process called posttranslational importation
- 34 Which of the following statements correctly characterizes ion channels?
 - a) The passage of ions through ion channels typically requires an active mechanism
 - b) A common stimulus serves as the basis for opening ion channels
 - c) Exposure of a ligand-gated channel to continuous high concentrations of its ligand is the necessary and sufficient stimulus for opening that channel
 - d) The opening or closing of an ion channel may be affected by the use of drugs
 - 35. Which of the following statements concerning the resting membrane potential is correct?
 - a) Passive fluxes of Na⁺ and K⁺ are balanced by an active pump that derives energy from enzymatic hydrolysis of adenosine 5'-triphosphate (ATP)

- b) A membrane is depolarized when the separation of the charge across the membrane is increased
- c) As the inside of the cell is made more negative with respect to the outside, the cell becomes depolarized
- d) In a cell whose membrane possesses only K⁺ channels, the membrane potential cannot be determined

- 36 Which of the following statements concerning ligand gating of neuronal membrane channels is true?
 - a) The normal triggering mechanism for gating involves nonspecific binding by large classes of molecules
 - b) Channels are opened when a given molecule selectively binds with the gating molecule
 - c) Ligand gating is triggered by changes in the electrical potential across the membrane
 - d) The channels are constructed of a mixture of proteins and lipids
 - 37 After the occurrence of an action potential, there is a repolarization of the membrane. The principal explanation for this event is that
 - a) Potassium channels have been opened
 - b) Sodium channels have been opened
 - c) Potassium channels have been inactivated
 - d) The membrane becomes impermeable to all ions
 - 38. During an in vitro experiment, the membrane potential of a nerve cell is hyperpolarized to -120 mV. At that time, a transmitter, known to be inhibitory in function, is applied to the preparation and results in a depolarization of the membrane. The most likely reason for this occurrence is that
 - a) Inhibitory transmitters normally depolarize the postsynaptic membrane
 - b) The normal response of the postsynaptic membrane to any transmitter is depolarization
 - c) The inhibitory transmitter activates ligand-gated potassium channels
 - d) Sodium channels become inactivated
 - 39. Which of the following statements concerning sodium channels is true?
 - a) They are opened when the membrane is hyperpolarized
 - b) They display a high conductance in the resting membrane
 - c) They open rapidly following depolarization of the membrane
 - d) They are rapidly inactivated by tetraethylammonium
 - 40. The term all-or-none response is most closely related to
 - a) The resting potential
 - b) Increased-conductance presynaptic potentials
 - c) Increased-conductance postsynaptic potentials
 - d) The action potential

The following diagram of a nerve action potential applies to Questions 41-43

- 41. At which labeled point on the action potential is the K+ closest to electrochemical equilibrium?
 - a) 1
 - b) 2
 - c) 3
 - d) 5
- 42. What process is responsible for the change in membrane potential that occurs between point 1 and point 3?
 - a) Movement of Na⁺ into the cell
 - b) Movement of Na⁺ out of the cell
 - c) Movement of K⁺ out of the cell
 - d) Activation of the Na⁺-K⁺ pump
- 43. What process is responsible for the change in membrane potential that occurs between point 3 and point 4?
 - a) Movement of Na⁺ into the cell
 - b) Movement of Na⁺ out of the cell
 - c) Movement of K⁺ into the cell
 - d) Movement of K⁺ out of the cell
- 44. Which of the following is TRUE; Nerve fibres continue to conduct impulses when
 - a) Extracellular sodium is replaced by potassium.
 - b) Extracellular sodium is replaced by a non-diffusible cation.

- c) The sodium-potassium pump is inactivated
- d) Temperature is lowered to below 0°C provided freezing does not occur
- 45. Which of the following is TRUE; an action potential in a nerve fibre
 - a) Occurs when its membrane potential is hyperpolarized to a critical level.
 - b) Is associated with a transient decrease in membrane permeability to sodium.
 - c) Is associated with a transient decrease in membrane permeability to potassium.
 - d) Induces local electrical currents in adjacent segments of the fibre.
- 46. Non-myelinated axons differ from myelinated axons in that they are
 - a) Not sheathed in Schwann cells.
 - b) Not capable of regeneration after section.
 - c) Found only in the autonomic nervous system.
 - d) Less excitable
- 47. Which of the following is False; an inhibitory post-synaptic potential
 - a) Cannot be recorded in a post-ganglionic sympathetic neurone.
 - b) May be recorded in an anterior horn motor neurone.
 - c) Does not exceed one millivolt in amplitude.
 - d) Moves membrane potential towards the equilibrium potential for potassium
- 48. Which of the following is FALSE; the equilibrium potential (E) for
 - a) An ion species is the membrane potential observed when its concentrations on each side of the membrane are in equilibrium.
 - b) Na⁺ is about +65 mV in squid axon.
 - c) An ion species depends on the ratio of the concentrations of the ion outside (I_o) and inside (I_i) the cell.
 - d) An ion species is the potential the membrane potential would approach if it became freely permeable to that ion.
- 49. Which of the following is FALSE with regard to saltatory conduction
 - a) Occurs only in myelinated fibres.
 - b) Does not depend on depolarization of the nerve membrane.
 - c) Has a slower velocity in cold than in warm conditions.
 - d) Is faster than non-saltatory conduction in nerve fibres with diameters around 10 μm.
- 50. Select the one correct answer concerning ion channels:
 - a) Most ion channels are open 100 percent of the time.
 - b) Na⁺ ions pass more readily through chloride channels than Cl⁻ ions do.
 - c) Most ion channels are composed of subunits.
 - d) A change in voltage across the cell membrane can open anion channels but never cation channels.

- 51. Ca²⁺ ions are needed in the extracellular solution for synaptic transmission because:
 - a) Ca²⁺ ions enter the presynaptic nerve terminal with depolarization and trigger synaptic vesicles to release their contents into the synaptic cleft.
 - b) Ca²⁺ ions are required to activate glycogen metabolism in the presynaptic cell.
 - c) Ca²⁺ ions must enter the postsynaptic cell to depolarize it.
 - d) Ca²⁺ ions prevent Mg²⁺ ions from releasing the transmitter in the absence of nerve impulses.
- 52. Select the correct answer. Electrical and chemical synapses differ in that
 - a) Electrical synapses have a longer synaptic delay than chemical synapses.
 - b) Chemical synapses can amplify a signal while electrical synapses cannot.
 - c) Chemical synapses do not have a synaptic cleft while electrical synapses do have a synaptic cleft.
 - d) Electrical synapses use agonist-activated channels and chemical synapses do not.
- 53. Mark the false statement; Electrical synapses
 - a) Can rectify.
 - b) Are gap junctions in the nervous system.
 - c) Have a longer synaptic delay than chemical synapses.
 - d) Do not require transmitters.
- 54. Which of the following is true about adaptation of sensory receptors:
 - a. Light touch is a slowly adapting stimuli
 - b. Fast adaptation of muscle spindle fiber is necessary for postural balance
 - c. Nociceptors adapt rapidly
 - d. Plasticity of neuronal synapses may influence speed of adaptability.
- 55. False about signals transmitted via type C unmyelinated fibers.
 - a. Travel at slowest velocities of 2mm/ second
 - b. May sub serve sensations of tickle and itch
 - c. Crude pressure and poorly localized touch travel via these pathway
 - d. They mostly follow the dorsal column medial lemniscal pathway.
- 56. True statement regarding pain pathways
 - a. Fast pain is transmitted in unmyelinated type C fibres
 - b. Synaptic transmitter accounting for slow pain is glutamate
 - c. The dorsal horn accounts for plasticity of pain modulation
 - d. Naked nerve endings are rapidly adapting to stimuli
- 57. False about visceral pain
 - a. Is poorly localized and unpleasant
 - b. Usually radiates or is referred to another anatomic site

- c. May lead to reflex contraction of adjacent skeletal muscles
- d. Is not caused by ischemia or chemical stimuli
- 58. True statement regarding referred pain
 - a. Accounts for pain in the inner left arm following angina pectoris attacks
 - b. Knowledge of different sites of referred pain has no clinical significance
 - c. Visceral pain fibres do not synapse on the same second order neurons as somatic fibres.
 - d. Dermatomal rule has no relation to referred pain physiology
- 59. Which of the following temporal sequences is correct for excitation—contraction coupling in skeletal muscle?
 - a) Increased intracellular [Ca²⁺]; action potential in the muscle membrane; cross-bridge formation
 - b) Action potential in the muscle membrane; depolarization of the T tubules; release of Ca²⁺ from the sarcoplasmic reticulum (SR)
 - c) Action potential in the muscle membrane; splitting of adenosine triphosphate (ATP); binding of Ca²⁺ to troponin C
 - d) Release of Ca²⁺ from the SR; depolarization of the T tubules; binding of Ca²⁺ to troponin C
- 60. In skeletal muscle, which of the following events occurs before depolarization of the T tubules in the mechanism of excitation–contraction coupling?
 - a) Depolarization of the sarcolemmal membrane
 - b) Opening of Ca²⁺ release channels on the sarcoplasmic reticulum (SR)
 - c) Uptake of Ca²⁺ into the SR by Ca²⁺-adenosine triphosphatase (ATPase)
 - d) Binding of Ca²⁺ to troponin C
- 61. Which of the following causes rigor in skeletal muscle?
 - a) No action potentials in motoneurons
 - b) An increase in intracellular Ca²⁺ level
 - c) An increase in adenosine triphosphate (ATP) level
 - d) A decrease in ATP level
- 62. Which of the following muscle proteins plays an important role in contraction of both smooth and striated muscle?
 - a) Calmodulin
 - b) Troponin
 - c) Tropomyosin
 - d) Actin
- 63. When comparing the contractile responses in smooth and skeletal muscle, which of the following is most different?
 - a) The source of activator calcium
 - b) The role of calcium in initiating contraction
 - c) The mechanism of force generation
 - d) The source of energy used during contraction

- 64. If all the Na⁺-K⁺ pumps in the membrane of a muscle cell were stopped, all of the following changes would be expected for the muscle cell **EXCEPT**
 - a) Immediate loss of the ability of the cell to carry action potentials.
 - b) Gradual decrease in internal K⁺ concentration.
 - c) Gradual increase in internal Na⁺ concentration.
 - d) Gradual decrease in resting membrane potential (the potential would become less negative).
- 65. Which one of the following statements is correct about the activation of different types of muscle?
 - a) Autonomic neurons can alter the frequency and strength of smooth muscle contraction
 - b) Neurons are not involved in the activation of smooth muscle cells.
 - c) Cardiac muscle contraction is triggered by motor neuron activity.
 - d) Postsynaptic potentials from autonomic neurons can alter skeletal muscle contraction.
- 66. Energy for skeletal muscle contraction is derived from stores of which of the following?
 - a) ATP, creatine phosphate, myoglobin
 - b) ATP, creatine phosphate, glycogen
 - c) ATP, creatine phosphate, amino acids
 - d) ATP, creatine phosphate, collagen
- 67. Hyperkalemia (high extracellular potassium concentration) can stop the heart because
 - a) Potassium ions bind to sodium channels, preventing their activity.
 - b) Potassium ions stimulate the sodium-potassium pump and thereby prevent cardiac action potentials.
 - c) The membrane potential of heart cells depolarizes and its sodium channels inactivate.
 - d) Potassium ions rush out through the inward rectifier.
- 68. Which of the following is **not** true of the structure of smooth muscles?
- a) The sarcotubular system and triad of the myofibrils is poorly developed
- b) There is less thick filaments and more thin filaments
- c) Troponin is present in actin of the muscle
- d) Myosin binds only if phosphorylated
- 69. Which of the following is **not** a characteristic of cardiac muscles?
- a. Striated with intercalated discs
- b. It has a peripherally placed nucleus
- c. Cardiac muscle fiber is bound by sarcolemma
- d. Myofibrils are embeded in the sarcoplasm

SECTION B (SAQS 40marks)

- 1. State five (5) differences between graded potentials and action potentials (5 marks)
- 2. Describe the role of Na⁺-K⁺ATPase in creating the resting membrane potential (5 marks)
- 3. State five (5) differences between Neuromodulators and Neurotransmitters (5marks)
- 4. State five (5) changes that occur in Nerve Cell Body during retrograde degeneration (5 marks)
- 5. How does a decrease in serum K⁺ concentration alter the resting membrane potential of the skeletal muscle? (5marks)
- 6. State five (5) actions of Insulin hormone in the human body. (5 marks)
- 7. List 5 hormones of the hypothalamus and state their functions. (5 marks)
- 8. Explain the regulation of Parathyroid hormone (5marks)

- 70. Which of the following is **not** an effect of physical activity in skeletal muscle?
- a. Promotes efficiency in contraction of the muscles from increased sarcoplasmic reticulum, mitochondria and ATP production
- b. Increase interleukin-6 synthesis which inhibits muscle fiber apoptosis and atrophy
- c. Generates muscular strength and induces hypertrophy of the muscle fibers
- d. Reduces oxidative stress with subsequent decrease in the production of reactive oxygen species