

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF MASTER OF SCIENCE IN PHYSICS

COURSE CODE: SP

SPH 817

COURSE TITLE:

NUCLEAR AND PARTICLE PHYSICS

DATE: THURSDAY 4TH AUGUST, 2022 TIME: 8 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

TIME: 3 Hours

Answer any five questions. All questions carry equal marks (14mks) Symbols used bear the usual meaning.

MMUST observes ZERO tolerance to examination cheating

Assume where necessary:

Assume where necessary:

Plank's constant
$$h = 6.626 \times 10^{-34}$$
 Js

Charge on electron
$$e = 1.602 \times 10^{-19} C$$

Speed of light
$$c = 3.0 \times 10^{-8} ms^{-1}$$

Atomic mass unit
$$1 u = 931 .5 MeV / c^{2}$$

Number of atoms
$$1 \text{ mole} = 6.023 \times 10^{23} \text{ atom s}$$

QUESTION ONE

- (a) Find the Coulomb barriers of $^{16}_{8}$ O, $^{93}_{41}$ Nb and $^{209}_{83}$ Bi as seen by a proton. [$R_{0} = 1.4$ fm] (4 marks)
- (b) Compare the Coulomb barriers obtained in 5(a) with the threshold energy for the reaction ${}^{16}_{8}O(p,d){}^{15}_{8}O$, ${}^{93}_{41}Nb(p,d){}^{92}_{41}Nb$ and ${}^{209}_{83}Bi(p,d){}^{208}_{83}Bi$ Take: $-{}^{16}_{8}O=15.994915$ u; ${}^{15}_{8}O=15.003070$ u; ${}^{93}_{41}Nb=92.906382$ u; ${}^{92}_{41}Nb=91.907211$ u; ${}^{209}_{83}Bi=208.980394$ u; ${}^{208}_{83}Bi=207.979731$ u; p=1.007825 u; d=2.014102 u; (10 marks)

QUESTION TWO

(a) Separation energy is the amount of energy needed to remove a nucleon from the nucleus. Show that the neutron and proton separation energy are defined by

$$S_{n} = \left(m\left(\begin{smallmatrix} A-1\\ Z \end{smallmatrix}X_{N-1}\right) - m\left(\begin{smallmatrix} A\\ Z \end{smallmatrix}X_{N}\right) + m_{n}\right)c^{2} \text{ and}$$

$$S_{p} = \left(m\left(\begin{smallmatrix} A-1\\ Z-1 \end{smallmatrix}X_{N}\right) - m\left(\begin{smallmatrix} A\\ Z \end{smallmatrix}X_{N}\right) + m\left(\begin{smallmatrix} 1\\ H \end{smallmatrix}\right)\right)c^{2}$$

respectively. The symbols have usual meaning.

(7 marks)

(b) Calculate the proton separation energy of 197 Au . Take 196 Pt = 195 .964926 u , 197 Au = 196 .9665430 u and 1 H = 1.007825 u . (3 marks)

(c) Mirror nuclei have the same odd value of mass number A but the values of the neutron number N and proton number Z are interchanged. Determine the mass difference between the two mirror nuclei which have N and Z differing in one unit. (4 marks)

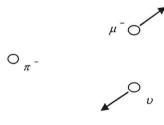
QUESTION TWO

(a) Show that the kinetic energies of the daughter nucleus (K_p) and α – particle (K_α) emitted in alpha decay in terms of the disintegration energy (Q value) is

$$K_{\alpha} = \left(\frac{A-4}{A}\right)Q;$$
 $K_{D} = \frac{4Q}{A}$

where A is the mass of the parent nucleus?

(6 marks)


(b) (i) Obtain the expression for the number of particles scattered from a beam from a beam of area A containing N_0 particles after it transverses a thickness T of target material containing n scattering centers per unit volume of cross sectional area σ .

(5 marks)

(ii) For a hypothetical scattering target 10^{-3} % of an incoming neutron beam is scattered. If the target has density of $1.06 \times 10^4 \ kg \ m^{-3}$, A = 200 and the total neutron cross section per nucleus $\sigma = 1.1 \ b \ arns$, find the target thickness? (3 marks)

QUESTION FOUR

4 (a) A pion at rest decays into a muon plus a neutrino as shown in figure 2

What is the speed of the muon?

(9 marks)

(b) Apply the sloping coordinate system to construct a strangeness number versus charge number plot for nine spin-0 mesons listed in table 1. Discuss the features of the resulting symmetry pattern. (5 marks)

QUESTION FIVE

5 (a) Determine the number of different baryon combination that can be made from 1, 2, 3, 4, 5 or 6 different quark flavors? What is the general formula for n flavors? (9 marks)

SPH 817: NUCLEAR AND PARTICLE PHYSICS

(b) Using four quarks (u, d, s, and c), construct a table of all possible baryon species. How many combinations carry a charm of 0, +1, +2 and +3? (5 marks)

QUESTION SIX

- 6 (a) Table 1 show the properties of elementary particles (antiparticles), use it to determine the identity of particle X in the following strong reaction?
 - (i) $\kappa^- + p \rightarrow \kappa^+ + X$

(ii)
$$p + p \rightarrow \pi^+ + n + \Lambda^0 + X$$
 (7 marks)

(b) A particle called xi-meson (Ξ^{-}) decays as follows:

$$\Xi^- \rightarrow \Lambda^0 + \pi^-$$

The Λ^0 particle and the π^- particle are unstable and decay in cascade until stable products remain:

$$\Lambda^{\,0} \,\rightarrow\, p \,+\, \pi^{\,-} \qquad \qquad \pi^{\,-} \,\rightarrow\, \mu^{\,-} \,+\, \overline{\upsilon}_{\,\mu}$$

$$\mu^- \rightarrow e^- + v_{\mu} + \overline{v_e}$$

- (i) Is the Ξ particle a lepton or a hadron? If the latter is it a baryon or a meson?
- (ii) What is your opinion about the spin of the Ξ^- particle based on its decay?

(7 marks)