

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER
SPECIAL/SUPPLIMENTARY EXAMINATIONS
FOR THE DEGREE
OF
MASTER OF SCIENCE IN PHYSICS

COURSE CODE: SPH 843E

COURSE TITLE: THEORY OF SUPERCONDUCTIVITY

DATE: TUESDAY 2ND AUGUST, 2022 TIME: 2 PM - 5 PM

INSTRUCTIONS TO CANDIDATES

TIME: 3 Hours

- Answer any FIVE questions
- Symbols used bear the usual meaning.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (14 MARKS)

- (a). Discuss the electrical, thermal, magnetic and mechanical properties of superconductors (7 marks)
- (b). Prove that the flux enclosed by a superconducting ring is quantized (7 marks)

OUESTION TWO (14 MARKS)

By constructing a minimum energy wave function, obtain the single particle excitation energy. (14 marks)

QUESTION THREE (14 MARKS)

- (a). Use a phase diagram to discuss the change in Gibb's free energy when a superconductor is subjected to an external magnetic field (6 Marks)
- (b). By making a wise guess of a trial wave function containing probability pair occupancy, obtain the kinetic and the potential energy of a superconducting system (8 marks)

QUESTION FOUR (14 MARKS)

- (a). Why should vortex movement should be restricted in a superconductor (2 mark)
- (b). Beginning from Maxwell's fourth equation, show that the magnetic field penetrating a superconducting substance decreases exponentially (14 marks)

QUESTION FIVE (14 MARKS)

- (a). Discuss and exemplify the nature of interaction of electrons in a Cooper pair. (4 marks)
- (b). Obtain the jump in specific heat at the transition temperature of a superconductor. (10 marks)

QUESTION SIX (14 MARKS)

- (a). The Hamiltonian which represents the interaction between two electrons mediated
 - through a phonon exchange is given as; a. $H_I = \sum_q \sum_{k,k'} \left| B_q \right|^2 \frac{\hbar \omega_q}{(\varepsilon_k \varepsilon_{k-q})^2 \hbar^2 \omega_q^2} C_{K'+q}^+ C_{k-q}^+ C_k C_{K'}$ where k and k' are the wave vectors of the electrons and q is phonon wavevector.
- (i) Write down the electron anti-commutation relations that the operators, Cs obey (3) marks)
- (ii) Fully describe the quantity B_a and state the condition for an attractive electronelectron interaction.(5 marks)
- (b). Describe any 3 salient features of the BCS theory of superconductivity. (6 marks)