

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS SUPPLEMENTARY/SPECIAL EXAMINATION 2021/2022 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE (CHEMISTRY) AND BACHELOR OF INDUSTRIAL CHEMISTRY

COURSE CODE:

SCH 313

COURSE TITLE: INORGANIC REACTION MECHANISMS OF

COMPLEX COMPOUNDS

DATE:

04/08/2022

TIME: 8.00-10.00 AM

INSTRUCTIONS TO CANDIDATES

Total Marks: 70

Answer all the Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages, Flyane Turn Over.

QUESTION ONE (18 Marks)

(a)	Name the	e following complex ions/coordination complexes:	
	(i)	[Ag(NH3)2][Ag(CN)2]	(2 marks)
	(ii)	$[CoCl_2(en)_2]^+$	(2 marks)
	(iii)	$K_3[Al(C_2O_4)_3]$	(2 marks)
(b)	(i)	Define trans-influence	(2 marks)
	(ii)	Differentiate between associative and dissociative mechanis	ms and derive
		their respective rate laws under steady state approximation	(6 marks)
(c)	Draw the	structures of the following compounds:	
	(i)	Optical isomers of cis-[Co(en) ₂ Cl ₂] ⁺	(2 marks)
	(ii)	Geometric isomers of [ML ₄ X ₂]	(2 marks)
		QUESTION TWO (18 Marks)	
(a)	A chel	ate effect is an entropy factor discuss	(6 marks)
(b)	State a	ny four differences between SN ¹ reaction and SN ² reaction	(4 marks)
(c)	With a	n example of each explain:	
	(i)	Complementary reaction	(2 marks)
	(ii)	1 (OIL COLLEGE)	(2 marks)
(d)	Explai	n how polarization theory has a trans effect in square pla	nar substitution
	reactio		((4 marks) Chicalo
		QUESTION THREE (16 Marks)	HILE MUNA
(a)	Given the	complex PtL ₃ X reacts with nucleophile Y, show the two paths	
	mechanis	ms where one is solvent mediated [Y] not in rate determining st	ep and second
	pathway	[Y] involved in rate determining step	(4 marks)
(b)	Explain v	why octahedral complexes $[Cr(H_2O)_6]^{2+}$ readily undergoes substi-	itution while
	[Cr(CN) ₆] ⁴⁻ is inert to substitution.	(4marks)
(c)	Transition	n metal complexes undergo ligand substitution reactions by eithe	r associative (A)
	or dissoci	ative (D) mechanisms. Show the reaction mechanism for each	of the following
	reactions		
	(i)	$[PtCl_4]^{2-} + NH_3 \rightarrow [PtCl_3(NH_3)]^- + Cl^-(A mechanism)$	(2 marks)
	(ii)	$[Co(NH_3)_5Cl]^{2+} + H_2O \rightarrow [Co(NH_3)_5H_2O]^{3+} + Cl^-(D \text{ mechan})^{3+}$	
	(iii)	Using activation parameters like ΔH , ΔS and ΔV show	
		differentiate associative from dissociative mechanism	(4 marks)

S 037.6

QUESTION FOUR (18 Marks)

- (a) Explain how you will distinguish the inner sphere electron transfer reaction from outer sphere electron transfer reaction (4 marks)
- (b) State two factors that favours dissociative mechanism in octahedral complexes

(2 marks)

- (c) Explain why the electron transfer reaction of $[Fe(CN)_6]^{4-}/[Fe(CN)_6]^{3-}$ is faster than $[Co(NH_3)_6]^{2+}/[Co(NH_3)_6]^{3+}$ (3 marks)
- (d) State any there applications of coordination complexes

(3 marks)

- (e) Draw the following coordination complexes:
 - (i) Bis(en)Co(III)-μ-amido-μ-hydroxobis(en)Co(III)

(2 marks)

(ii) Diaquadiiododinitritopalladium(IV)

(2 marks)

(iii) Enantiomers of [Pt(en)₂Cl₂] ²⁺

(2 marks)

i	H.				Pe	ric	odi		al	ole	b.							He
i i	1.01	2				1.	do	. 5					13	1.4	15	16	1,7	4.00
	3	4				6	77 1	the	2			. 3	5	. 6	7	8	9	10
		Re										15	В	C	N	0	F,	Ne
	0.94	9.01		3		A POPA	CA PO	ts	70	MA	Δ.		10.81	12.01	14.01	15.99	19.00	20.18
	23	12				2 B 1 2	Sept L	0		60	,	* 2	13	14	15	16	2.7	18;
	Ma	Mc	79 1		5								Al	Si	P	S	Cl	Ar
1	22.99	. 24.37		Q.	. g.1	6 1	7	1	<u> 9</u>	10_	11	1.2	26.98	28.09	30.97	32.07	35.45	39,95
1	130	300	.31	2.2	123	:24	N2E	26	27	28	29	30	31	32	33	34	35	26
	- (C. 1)	<u>ं</u> व	Sc		-181	Cr.	Min	Fe	Co	N.	Cu	Zn	Ga	Ge	As	Se	В	Kr
	30.00	20.00	44.96	47.87	10.04	1382.00	58.84	55.83	58,83	58.69	63.55	65.41	69.72	72.64	74.02	78.96	78.90	89.80
.]	497	الجار	-39	:40	142	: 43	34,	60	45	46	47	48	49	50	51	52	53	541
1	Thb !	Sr	Y	-26	140	Mo	To	RU	Rh	Pd	Ag	Cd	In	Sn	Sb	le	Ī	Xe
1	25.47	87.62	12.58	91,72	92.31	95.94	(38)	1007	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.29
. 1	55	56	.57	72	73	74	1 775	76.	77	78	79	80	81	82	- 83	. 34	85	86
1	CS	Ba	La	HF	Ta	IW	Re	(M)	Ir.	Pt	Au	Hg	TI	Pb	В	Po	At	Rn
1)	732.91	137.33	138.91	178.49	180.95	182.84	186.21	890.22	192,22	395.00	196.97	200.59	204.38	207.2	200.98	(209)	(210)	(222)
. Zara	87	୍ ଅଧ	89	104	105	106	107	108	109		111	5.4						or and a
	Er	Ra	Ac	Rf	Db	Sg	Bh	FIS:	Mit	Os	Rg	1						
l	(223)	(226)	(227)	(261)	(262)	(266)	(264)	(270)	(268)	(281)	(272)							

58											69		
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	疆王	14		96	97	98		100		111/2	193
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)