

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATIONS 2021/2022 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF SCIENCE
IN
CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE: BTB 323/CSE 352

COURSE TITLE: HYDRAULICS

DATE:5TH AUGUST 2022 TIME: 8 A.M – 10 A.M

INSTRUCTIONS:

- 1. This paper contains FOUR Questions
- 2. Answer Question One and any other two questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. It is in the best interest of the candidate to write legibly
- 5. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 3 Printed Pages. Please Turn Over.

CSE 352 HYRAULICS

Figure Q1 is a composite and compound channel cross-section with main and floodway parts. Its longitudinal bottom slope is S_b =0.0085.The normal water depth within the main part is y = 2.135 m and within the floodway is y = 83 cm. Calculate:

- a) The amount of discharge passing within this channel b) the state of flow
- c) The existing specific energy within this channel d) the critical depth of this crosssection e) the minimum energy of this cross-section f) the alternate depth of this cross-section

Figure Q 1

[20 Marks]

QUESTION TWO

a) A lined trapezoidal channel has one side vertical and the other one having as slope 1:1. The channel has to deliver 8 m^3/s when laid on a slope of 0.0002. What would be the dimensions of the efficient section which requires minimum lining? Take n = 0.015 [10 marks]

b) A circular pipe 0.80 m in diameter conveys a discharge at a depth of 0.30 m. if the pipe is laid on a slope of 1 in 900, estimate the discharge of this channel. Take n = 0.015 [10 marks]

OUESTION THREE

[20 Marks]

- a) A rectangular channel 2.4 m wide carries uniform flow of 7 m³/s at a depth of 1.5 m. If there is a local rise of 0.15 m in bed level, calculate the change of water surface elevation [8 marks]
- b) A trapezoidal channel with a base of 6m and side slope of 2H: 1V conveys water at $17 \text{ m}^3/\text{s}$. Is the flow situation sub critical or supercritical [8 marks]
- c) A gear pump has a 75 mm outside diameter, a 50 mm inside diameter, and a 25 mm width. If the actual pump flow at 1800rpm and rated discharge is 0.105 m³/min, what is the volumetric efficiency? [4 marks]

- a) Explain the occurrence of water hammer in pipes [5 marks]
- b) The length and diameter of a suction pipe of a single acting reciprocating pump are 5 m and 15 cm respectively. The pump has a piston of diameter 20 cm and a stroke length of 35 cm. The centre of the pump is 4 m above the water surface in the pump. The length and diameter of the delivery pipe are 30 m and 10 cm, respectively and water is delivered by the pump to a tank 25 m above the centre of the pump. The atmospheric pressure is 10.3 m H2O. If the pump is running at 35 rpm, determine;
- i) Pressure head due to acceleration at the beginning of the suction stroke
- ii) Maximum pressure head due to acceleration at the suction pipe
- iii) Pressure head in the cylinder at the beginning and at the end of the suction stroke

FORMULAE SHEET

	rectangular	trapezoidal	triangular	circular	parabolic
	$ \begin{array}{c} B \\ \downarrow \\ b \end{array} $		$\bigcup_{m} B$		
flow area A	bh	(b + mh) 1	mh²	$\frac{1}{8}(\theta - \sin \theta)D^2$	$\frac{2}{3}Bh$
wetted perimeter P	b+2h	$b + 2h\sqrt{1 + m^2}$	$2h\sqrt{1+m^2}$	$\frac{1}{2}\theta D$	$B + \frac{8}{3} \frac{h^2}{B}$
hydraulic radius R _k	$\frac{bh}{b+2h}$	$\frac{(b+mh)h}{b+2h\sqrt{1+m^2}}$	$\frac{mh}{2\sqrt{1+m^2}}$	$\frac{1}{4} \left[1 - \frac{\sin \theta}{\theta} \right] D$	$\frac{2B^2h}{3B^2+8h^2}$
top width B	b	b + 2mh	2mh	$or \frac{(\sin \theta/2)D}{2\sqrt{h(D-h)}}$	$\frac{3}{2}Ah$
hydraulic depth D _k	h ·	$\frac{(b+mh)h}{b+2mh}$	$\frac{1}{2}h$	$\left[\frac{\theta - \sin \theta}{\sin \theta / 2}\right] \frac{D}{8}$	$\frac{2}{3}h$

$P = 2r\theta$	$\Delta P = \rho c u$		
$A = r^{2}\theta - \frac{r^{2}\sin 2\theta}{2} = r^{2}\left(\theta - \frac{\sin 2\theta}{2}\right)$	$h_2 = \frac{-h_2}{2} + \sqrt{\frac{{h_1}^2}{4} + \frac{2q^2}{gh_1}}$		
$n_{eq} = \sqrt{\frac{n_i^2 P_i}{\sum P_i}}$	$\frac{1}{\lambda} = -2.10 \log_{10} \frac{K_s}{3.7D} + \frac{2.51}{R_e \sqrt{\lambda}}$		
$E = h + \frac{V^2}{2g}$	$c = \sqrt{\frac{K}{\rho}}$		