



(University of Choice)

# MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

# UNIVERSITY SPECIAL/SUPPLEMENTARY EXAMINATIONS 2021/2022 ACADEMIC YEAR

# THIRD YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF TECHNOLOGY
IN
BUILDING CONSTRUCTION

COURSE CODE: BTB 318

COURSE TITLE: CIVIL ENGINEERING CONSTRUCTION

DATE: 5<sup>TH</sup> AUGUST 2022 TIME: 8 A.M - 10 A.M

#### **INSTRUCTIONS:**

- 1. This paper contains FIVE questions
- 2. Answer Question One and Any Other Three questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. No unauthorized materials are allowed in the examination room
- 5. Examination duration is 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 7 Printed Pages. Please Turn Over. BTB 318 Civil Engineering Construction  $\hat{I}$ 

# **QUESTION 1**

List and briefly describe all the parts of BS 8110. a)

(6 marks)

- b) Explain these terms:
  - (i) Ultimate state limit.

(2marks)

(ii) Serviceability limit state.

(2marks)

- Figure 1 below is a simply supported reinforced concrete a rectangular beam of 275 mm c) width by 450 mm depth carrying uniformly distributed load including self-weight of 4 kN/m and an imposed weight of 5 kN/m. Design the beam for the following in accordance
  - (i) Bending reinforcement

(8 marks)

(ii) Shear reinforcement

(4 marks)

(iii)Deflection

(3 marks)

Design data:

Exposure condition

Mild

Fire Resistance

 $1^{1/2} hrs$ 

Concrete cube strength  $f_{cu}$ 

25 N/mm<sup>2</sup>

Steel characteristics strength fy

500 N/mm<sup>2</sup>

Taking the 10 mm diameter as the main reinforcement bars.



# **QUESTION 2**

Figure 2 below is a 250 mm thick reinforced concrete floor slab with 10 mm diameter high yield steel bars and an imposed loading of 4 kN/m<sup>2</sup> spanning between the brick walls with the following design data:

$$f_{cu} = 25 \text{ N/mm}^2$$

Concrete density 
$$\rho_c = 24 \text{ kN/m}^3$$

$$f_y = 500 \text{ N/mm}^2$$

Fire resistance = 
$$1^{1}/_{2}$$
 hrs



Figure 2

Design the floor for:

(i) Bending moment.

(10 marks)

(ii) Check for deflection and cracking.

(5 marks)

## **QUESTION 3**

A short-braced column with  $f_{cu} = 40 \text{ N/mm}^2$  and  $f_y = 500 \text{ N/mm}^2$  is required to support an ultimate load axial load of 5000 kN. Determine a suitable square section for the column assuming that the area of longitudinal steel  $A_{sc}$  is of the order of 3% of the gross-sectional area of the column Acol.

# **QUESTION 4**

A 800mm square column carries a dead lived  $G_k = 1200$  kN and imposed load  $Q_k = 300$  kN. The safe bending capacity of the soils is 170 kN/m<sup>2</sup>. Design a square footing with an overall depth of 540 mm to carry the loading given the following (to BS 8110): Concrete characteristics strength  $f_{cu} = 25$  N/mm<sup>2</sup>,  $f_y = 500$  N/mm<sup>2</sup>, cover 50 mm and footing self-weigh = 125 kN. (15 marks)

## **QUESTION 5**

The cantilever retaining wall shown below is backfilled with granular material having a unit weight,  $\rho$ , of 19 kNm<sup>-3</sup> and an internal angle of friction,  $\Phi$ , of 30°. Assuming that the allowable bearing pressure of the soil is 120 kNm<sup>-2</sup>, the coefficient of friction is 0.4 and the unit weight of reinforced concrete is 24 kNm<sup>-3</sup>.

1) Determine the factors of safety against sliding and overturning.

2) Calculate ground bearing pressures.

3) Design the wall and base reinforcement assuming  $f_{cu} = 40 \text{ kNm}^{-2}$ ,  $f_y = 500 \text{ kNm}^{-2}$  and the cover to reinforcement in the wall and base are, respectively, 35 mm and 50 mm.

(15 marks)



#### **QUESTION 6**

1. List the eleven roles of architect or engineer during the contraction period of a project.

(11 marks)

2. Describe the types of disputes that arise between the client and architect, client and contractor, or architect and contractor. (4 marks)

Table I Nominal cover to all reinforcement to meet specified periods of fire resistance (based on Table 3.4, BS 8110)

| Fire    |                     | No         | Nominal cover (mm)  | ım)        |         |
|---------|---------------------|------------|---------------------|------------|---------|
| (hours) | B                   | Beams      | H                   | Floors     | Columns |
|         | Simply<br>supported | Continuous | Simply<br>supported | Continuous |         |
| 0.5     | 20                  | 20         | 20                  | 20         | 20      |
| 0.      | 20                  | 20         | 20                  | 20         | 20      |
| 1.5     | 20                  | 20         | 25                  | 20         | 20      |
| 0.      | 40                  | 30         | 35                  | 25         | 25      |
| 0.      | 09                  | 40         | 45                  | 35         | 25      |
| 0.      | 70                  | 50         | 55                  | 45         | 25      |

Table 2 Cross-sectional areas of groups of bars (mm²)

| Bar size   |      |      |      |      | Number of bars | of bars |      |       |       |       |
|------------|------|------|------|------|----------------|---------|------|-------|-------|-------|
|            | 1    | 2    | 3    | 4    | ر<br>ک         | 9       | 7    | 8     | 6     | 10    |
| 9          | 28.3 | 56.6 | 84.9 | 113  | 142            | 170     | 198  | 226   | 255   | 283   |
| <b>ω</b> ; | 50.3 | 101  | 151  | 201  | 252            | 302     | 352  | 405   | 453   | 503   |
| 10         | 78.5 | 157  | 236  | 314  | 393            | 471     | 550  | 628   | 707   | 785   |
| 12         | 113  | 226  | 339  | 452  | 566            | 629     | 792  | 905   | 1020  | 1130  |
| 16         | 201  | 402  | 603  | 804  | 1010           | 1210    | 1410 | 1610  | 1810  | 2010  |
| 20         | 314  | 628  | 943  | 1260 | 1570           | 1890    | 2200 | 2510  | 2830  | 3140  |
| 25         | 491  | 982  | 1470 | 1960 | 2450           | 2950    | 3440 | 3930  | 4420  | 7010  |
| 32         | 804  | 1610 | 2410 | 3220 | 4020           | 4830    | 5630 | 6430  | 7240  | 0.00  |
| 40         | 1260 | 2510 | 3770 | 5030 | 6280           | 7540    | 8800 | 10100 | 11300 | 12600 |

Table 3 Values of design concrete shear stress,  $v_c$  (N/mm²) for  $f_{cu} = 25$  N/mm² concrete (Table 3.8, BS 8110)

| 100A,                                                            |                                                              | Effective depth (d) mm                                       |                                                              |                                                              |                                                              |                                                              |                                                              |                                                              |  |  |  |  |
|------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|
| <i>bd</i><br>                                                    | 125                                                          | 150                                                          | 175                                                          | 200                                                          | 225                                                          | 250                                                          | 300                                                          | ≥ 400                                                        |  |  |  |  |
| ≤ 0.15<br>0.25<br>0.50<br>0.75<br>1.00<br>1.50<br>2.00<br>≥ 3.00 | 0.45<br>0.53<br>0.57<br>0.77<br>0.84<br>0.97<br>1.06<br>1.22 | 0.43<br>0.51<br>0.64<br>0.73<br>0.81<br>0.92<br>1.02<br>1.16 | 0.41<br>0.49<br>0.62<br>0.71<br>0.78<br>0.89<br>0.98<br>1.12 | 0.40<br>0.47<br>0.60<br>0.68<br>0.75<br>0.86<br>0.95<br>1.08 | 0.39<br>0.46<br>0.58<br>0.66<br>0.73<br>0.83<br>0.92<br>1.05 | 0.38<br>0.45<br>0.56<br>0.65<br>0.71<br>0.81<br>0.89<br>1.02 | 0.36<br>0.43<br>0.54<br>0.62<br>0.68<br>0.78<br>0.86<br>0.98 | 0.34<br>0.40<br>0.50<br>0.57<br>0.63<br>0.72<br>0.80<br>0.91 |  |  |  |  |

NB: For other values of cube strength up to a maximum of 40 Nmm<sup>-2</sup>, the design shear stresses can be determined by multiplying the values in the table by the factor  $\sqrt{(f_{cu}/25)^{1/3}}$ .

Table 4 Form and area of links in beams (Table 3.7, BS 8110)

| Values of v (N/mm²)                                      | Area of shear reinforcement to be provided                                                            |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| $v < 0.5v_c$ throughout the beam                         | No links required but normal practice to provide nominal links in<br>members of structural importance |
| $0.5v_{\rm c} < v < (v_{\rm c} + 0.4)$                   | Nominal (or minimum) links for whole length of beam $A_{iv} \ge \frac{0.4bs_v}{0.87f_{vv}}$           |
| $(v_c + 0.4) < v < 0.8\sqrt{f_{cu}} \text{ or 5 N/mm}^2$ | Design links $A_{yy} \ge \frac{bs_y(v - v_c)}{0.87f_{yy}}$                                            |

Table 5 Values of Asv/sv

| Diameter<br>(mm)                        |                                  |                                  |                               |                                  | Spa                             | cing of link                     | s (mm)                         |                                  |                                  | , 4                              | po street                       |
|-----------------------------------------|----------------------------------|----------------------------------|-------------------------------|----------------------------------|---------------------------------|----------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|---------------------------------|
| 1 · · · · · · · · · · · · · · · · · · · | 85                               | 90                               | 100                           | 125                              | 150                             | 175                              | 200                            | 225                              | 250                              | 275                              | 300                             |
| 8<br>10<br>12<br>16                     | 1.183<br>1.847<br>2.659<br>4.729 | 1.118<br>1.744<br>2.511<br>4.467 | 1.006<br>1.57<br>2.26<br>4.02 | 0.805<br>1.256<br>1.808<br>3.216 | 0.671<br>1.047<br>1.507<br>2.68 | 0.575<br>0.897<br>1.291<br>2.297 | 0.503<br>0.785<br>1.13<br>2.01 | 0.447<br>0.698<br>1.004<br>1.787 | 0.402<br>0.628<br>0.904<br>1.608 | 0.366<br>0.571<br>0.822<br>1.462 | 0.335<br>0.523<br>0.753<br>1.34 |

Table 6 Basic span /effective depth ratio for rectangular or flanged beams (Table 3.9, BS 8110)

| Support conditions | Rectangular<br>sections | Flanged beams with width of beam $width$ of flange $width$ of flange |
|--------------------|-------------------------|----------------------------------------------------------------------|
| Cantilever         | 7                       | 5.6                                                                  |
| Simply supported   | 20                      | 16.0                                                                 |
| Continuous         | 26                      | 20.8                                                                 |

Table 7 Modification factors for compression reinforcement (Table 3.11, BS 8110)

| 100 \frac{A'_{\sigma} \text{pro}}{b d} | y Fac | ctor                                    |
|----------------------------------------|-------|-----------------------------------------|
| 0.00                                   | 1.00  |                                         |
| 0.15                                   | 1.05  |                                         |
| 0.25                                   | 1.08  |                                         |
| 0.35                                   | 1.10  | 4 · · · · · · · · · · · · · · · · · · · |
| 0.50                                   | 1.14  | * 2<br># * *                            |
| 0.75                                   | 1.20  |                                         |
| 1.0                                    | 1.25  | 4                                       |
| 1.5                                    | 1.33  | 10 K 10 C                               |
| 2.0                                    | 1.40  | * •                                     |
| 2.5                                    | 1.45  |                                         |
| ≥ 3.0                                  | 1.50  | * Was 25                                |

NOTE 1 The values in this table are derived from the following equation:

Modification factor for compression reinforcement =

$$1 + \frac{100A'_{s prov}}{bd} / \left(3 + \frac{100A'_{s prov}}{bd}\right) \le 1.5$$

equation 9

NOTE 2 The area of compression reinforcement A used in this table may include all bars in the compression zone, even those not effectively tied with links.

Table 7 Modification factors for tension reinforcement (based on Table 3.10, BS 8110)

| Service stress          |      |      |      |      | $M/bd^2$ |      |      | 7    | j. <u>5</u> . |
|-------------------------|------|------|------|------|----------|------|------|------|---------------|
| ·                       | 0.50 | 0.75 | 1.00 | 1.50 | 2.00     | 3.00 | 4.00 | 5.00 | 6.00          |
| 100                     | 2.00 | 2.00 | 2.00 | 1.86 | 1.63     | 1.36 | 1.19 | 1.08 | 1.0           |
| 150                     | 2.00 | 2.00 | 1.98 | 1.69 | 1.49     | 1.25 | 1.11 | 1.01 | 0.94          |
| $(f_y = 250) 167$       | 2.00 | 2.00 | 1.91 | 1.63 | 1.44     | 1.21 | 1.08 | 0.99 | 0.9           |
| 200                     | 2.00 | 1.95 | 1.76 | 1.51 | 1.35     | 1.14 | 1.02 | 0.94 | 0.88          |
| 250                     | 1.90 | 1.70 | 1.55 | 1.34 | 1.20     | 1.04 | 0.94 | 0.87 | 0.83          |
| 300                     | 1.60 | 1.44 | 1.33 | 1.16 | 1.06     | 0.93 | 0.85 | 0.80 | 0.76          |
| $(f_{\rm y} = 500) 323$ | 1.41 | 1.28 | 1.18 | 1.05 | 0.96     | 0.86 | 0.79 | 0.75 | 0.72          |

Note 1. The values in the table derive from the equation:

Modification factor = 
$$0.55 + \frac{(477 - f_s)}{120\left(0.9 + \frac{M}{bd^2}\right)} \le 2.0$$
 (equation 7)

where

f, is the design service stress in the tension reinforcement

M is the design ultimate moment at the centre of the span or, for a cantilever, at the support.

Note 2. The design service stress in the tension reinforcement may be estimated from the equation:

$$f_{\rm s} = \frac{5^*}{8} \times \frac{f_{\rm y} A_{\rm s,req}}{A_{\rm s,prov}} \times \frac{1}{\beta_{\rm b}}$$
 (equation 8)

where  $\beta_b$  is the percentage of moment redistribution, equal to 1 for simply supported beams.

As pointed out in Reynolds RC Designers Handbook the term 5/8 which is applicable to  $\gamma_{ms} = 1.15$  is given incorrectly as 273 in BS 8110 which is applicable to  $\gamma_{ms} = 1.05$ .

Table 8 Cross-sectional area per metre width for various bar spacing (mm²)

| •        |       |       |       | •     |               |              | (,,,,,,      |              | 14340                 |
|----------|-------|-------|-------|-------|---------------|--------------|--------------|--------------|-----------------------|
| Bar size |       |       | · ·   | Sp    | acing of bars |              |              | , ···        | .01                   |
| Ál       | 50    | 75    | 100   | 125   | 150           | 175          | 200          | 250          | 300 92                |
| No. 6    | 566   | 377   | 283   | 226   | 189           | 162          | 142          | 113          | 94.3                  |
| 8        | 1010  | 671   | 503   | 402   | 335           | 287          | 252          | 201          | 168 <sup>S</sup> 2    |
| 10       | 1570  | 1050  | 785   | 628   | 523           | 449          | 393          | 314          | 262                   |
| wh. 12   | 2260  | 1510  | 1130  | 905   | 754           | 646          | 566          | 452          | 377.72                |
| TA 16    | 4020  | 2680  | 2010  | 1610  | 1340          | 1150         | 1010         | 804          |                       |
| in 1 20  | 6280  | 4190  | 3140  | 2510  | 2090          | 1800         | 1570         | 1260         |                       |
| 25       | 9820  | 6550  | 4910  | 3930  | 3270          | 2810         | 2450         | 1.000.000.00 | 1050                  |
| 32       | 16100 | 10700 | 8040  | 6430  | 5360          |              |              | 1960         | 1640                  |
| 40       | 25100 | 16800 | 12600 | 10100 | 8380          | 4600<br>7180 | 4020<br>6280 | 3220<br>5030 | 2680 <i>0</i><br>4190 |