

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY SPECIAL / SUPPLEMENTARY EXAMINATIONS 2021/2022 ACADEMIC YEAR

2ND YEAR SEMESTER ONE EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF BUILDING TECHNOLOGY IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE:

BTB 231

COURSE TITLE:

CONCRETE TECHNOLOGY

DATE: 26TH JULY 2022

TIME: 3 P.M - 5 P.M

INSTRUCTIONS:

- 1. This paper consists of **FOUR** questions.
- 2. ANSWER QUESTION ONE (COMPULSORY) AND ANY OTHER TWO QUESTIONS.
- 3. Marks for each question are indicated in the parenthesis.

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 7 Printed Pages. Please Turn Over.

Question ONE (30 Marks)

a) Define the following terms as used in concrete technology.

[4 Marks]

- i. Aggregates
- ii. Cement
- iii. Admixtures
- iv. Concrete
- b) What is a structural material? Briefly explain why concrete is regarded as a structural material. [2 Marks]
- c) Explain any THREE advantages of using concrete as a structural construction material.

[6 Marks]

d) Describe any FOUR qualities of a good concrete.

[2 Marks]

e) Highlight FOUR types of impurities in sand.

[2 Marks]

- f) Briefly describe the bulking phenomenon in sand and state **THREE** effects of bulking of sand on concrete. [3 Marks]
- g) Highlight any FOUR properties of a good cement for use in concrete production. [2 Marks]
- h) Design a concrete mix using the following data:

 28 days mean target strength = 40 MPa, Risk factor K = 1.64, Standard deviation S = 8

 N/mm². The maximum size of coarse aggregate = 20mm, Aggregate type = uncrushed

 50% Fine aggregate passes through the 600-micron sieve, Slump range 60-180, 25 mm cover to reinforcement, specific gravity of aggregate = 2.6, ordinary Portland cement of 42.5 MPa and exposed to a moderate environmental condition.

 [9 Marks]

NB: Use the tables, curves and figures attached at the end of the question paper.

Question TWO (20 marks)

- a) Describe the TWO main classification (classes/types) of aggregates, giving one example in each case. [3 Marks]
- b) Briefly describe the following properties of coarse aggregates.

[5 Marks]

: 1

- i. Size
- ii. Shape
- iii. Surface texture
- iv. Specific surface
- v. Soundness

CONCRETE TECHNOLOGY

Page 2 of 7

c) Highlight THREE factors that affect the bulk density of coarse aggregates. [4.5 Marks]

d) Highlight any THREE precautionary measures to be undertaken in storing of cement.

[3 Marks]

e) Highlight **THREE** reasons why accelerator admixtures would be added to concrete to enhance the early strength development. [3 Marks]

f) State THREE quality requirements of aggregates.

[1.5 Marks]

Question THREE (20 marks)

- a) What is Fresh concrete? What is the importance of plastic state of fresh concrete during construction period? [3 Marks]
- b) Briefly describe the process of determining the concrete slump (Slump Test). [7 Marks]
- c) What is workability of concrete? State TWO ways of increasing workability without compromising the strength of the concrete. [3 Marks]
- d) Describe how the following factors affect workability of concrete.

[3 Marks]

- i. Water content
- ii. Cement content
- iii. Aggregate size
- e) Highlight FOUR main requirements which form the basis of selection and proportioning of mix ingredients during the mix design of concrete. [4 Marks]

Question FOUR (20 Marks)

a) What is hardened concrete?

[1 Marks]

b) Briefly describe the following properties of hardened concrete.

[3 Marks]

- i. Compressive strength
- ii. Durability
- iii. Shrinkage

c) What is formwork?

[1 Marks]

d) Highlight FIVE qualities of a good formwork

[5 Marks]

e) Highlight FOUR basic requirements of formwork.

[4 Marks]

f) Describe THREE factors that determines the removal time of formwork.

[3 Marks]

g) Describe THREE classes/types of loads that are being supported by formwork.

CONCRETE TECHNOLOGY

Page 3 of 7

[3 Marks]

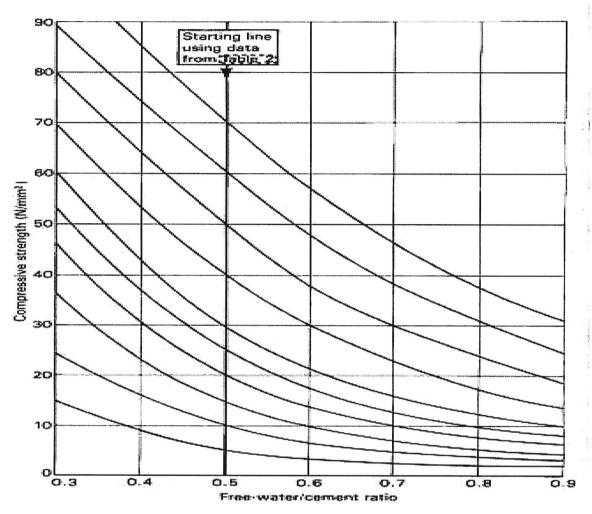


Figure 4: Relationship between compressive strength and free water/cement ratio

Table 2 App	roximate comp	ressive	e strengt	ths (N/n	nm²) of			
concrete mi	xes made with a	free-v	vater/ce	ement ra	atio of 0.	5		
Cement	Type of	Compressive strengths (N/mm²)						
strength	coarse	.,,,	Age (days)	d teditor e terre e e e	*** * * ***		
class	aggregate	3	7	28	91			
42.5	Uncrushed	22	30	42	49			
	Crushed	27	36	49	56			
52.5	Uncrushed	29	37	48	54			
	Crushed	34	43	55	61			

Throughout this publication concrete strength is expressed in the units N/mm².

 $^{1 \}text{ N/mm}^2 = 1 \text{ MN/m}^2 = 1 \text{ MPa.}$ (N = newton; Pa = pascal.)

Table 3 Appro	ximate free-v	vater co	ntents (k	g/m³) r	equired
to give various	levels of worl	kability			
Slump (mm)	.1	0-10	10-30	30-60	60-180
Vebe time (s)	*	>12	6-12	3-6	0-3
Maximum size					
of aggregate	Type of				
(mm)	aggregate				
10	Uncrushed	150	180	205	225
	Crushed	180	205	230	250
20	Uncrushed	135	160	180	195
	Crushed	170	190	210	225
40	Uncrushed	115	140	160	175
	Crushed	155	175	190	205

Note: When coarse and fine aggregates of different types are used, the free-water content is estimated by the expression:

2
/3 $W_{\rm f} + ^{1}$ /3 $W_{\rm c}$

where $W_{\rm f}$ = free-water content appropriate to type of fine aggregate and $W_{\rm c}$ = free-water content approporiate to type of coarse aggregate.

Table 4: Minimum cement content (kg/m³) for various exposure conditions of concrete.

	Reinforced concrete Minimum aggregate size (mm)			Non-reinforced concrete Maximum aggregate size (mm)		
Concrete structure exposure						
	40	20	10	40	20	10
Mildly-protected from the heat and exposed to little rain, except for short periods of time while under construction.	220	250	290	200	220	270
Intermediate-sheltered from the rain and mid-water reservoir for long periods of time. Concrete used for structures immersed in the water.	260	290	340	220	250	300
Aggressive-exposure to sea water, rain and direct sun and so forth interchangeably.	320	360	410	270	310	360

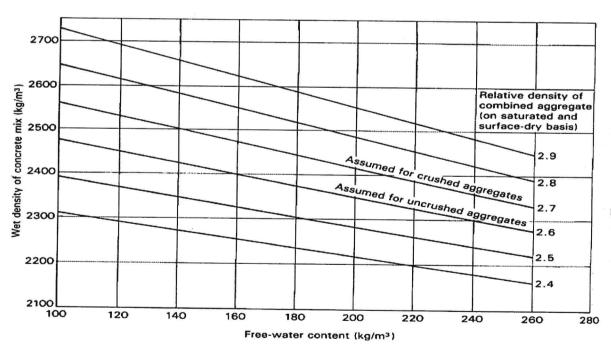


Figure 5 Estimated wet density of fully compacted concrete

Maximum aggregate size: 20mm

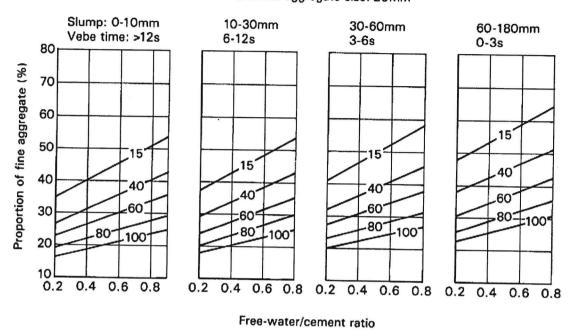


Figure 6 (continued)