

(University of Choice)

MASINDE MULIRO UNIVERSITY OF
SCIENCE AND TECHNOLOGY
(MMUST)
MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE OF UCATION AND BACHELO

BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (SUPPLEMENTARY EXAM)

COURSE CODE: SCH 140

COURSE TITLE: PHYSICAL CHEMISTRY

DATE: 27.07.2022

TIME: 8.00-10.00 AM

INSTRUCTIONS TO CANDIDATES

> Answer ALL questions

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 12 Printed Pages. Please Turn Over.

Question one (18 marks)

a) Give the Van der Walls equation defining all the terms

(3 marks)

- b) State any two postulates of kinetic theory of gases and why it may not be applicable in real gas situation (4 marks
- c) Briefly explain the terms;

i) Avogadros Law

(2marks)

ii)Maxwell-Boltzmann distribution

(2marks)

- d) The volume of a gas at 1 atm pressure is 390 cm³. Calculate the volume that the gas will occupy if the pressure is increased to 1.5 atms at constant temperature (2 marks)
- e)i) What is common ion effect

(1mark)

- ii) The solubility of AgCl is 1.67×10^{-5} moles per litre at 25 °C. Calculate the solubility product of AgCl (2marks)
- f) How does increase in pressure affect solubility of gases in water

(2marks)

Question two (17 marks)

a) A mixture of 0.1 mol NO, 0.05 mol H₂ and 0.1 mol H₂O are placed in a 1.0 litre flask. The mixture established the equilibrium;

 $2NO_{(g)} + 2H_{2(g)} \quad \blacktriangleleft \qquad \qquad \blacktriangleright \qquad N_{2(g)} + 2H_2O_{(g)} \ \ \text{at equilibrium, [NO]} = 0.07 \ M.$

i) Calculate the equilibrium concentrations of H₂, N₂ and H₂O

(4marks)

ii) Write the expression for K_C for this reaction

(2marks)

iii) Calculate K_c for this reaction

(2marks)

- b) The pH of a solution of acetic acid $(C_2H_4O_2)$ is found to be 2.68. What is the K_a for this solution (3marks)
- c) Methanol (CH₃OH) is prepared by a reaction of carbon monoxide and hydrogen gases. In a laboratory test, a vessel was filled with 35.4g CO and 10.2 H₂

$$CO_{(g)} + H_{2(g)}$$
 \longrightarrow $CH_3OH_{(l)}$

- i) How many grams of methanol would be prepared in a complete reaction (3marks)
- ii) How many grams of the unconsumed reagent remained at the end of the reaction (3marks)

Question three (18marks)

- a)Pure benzene freezes at 5.6 °C. A solution prepared by dissolving 0.45g of an unknown substance in 27.3g benzene is found to freeze at 4.18 °C. Determine the molecular weight of the unknown substance. The freezing point constant for benzene is 5.12 °C/mol. (4marks)
- b) Use examples to discuss any two colligative properties

(4marks)

c) A voltaic cell is represented by the short notation;

 $Mg_{(s)} \mid Mg^{2+}_{(aq)} \mid \mid Ni^{2+}_{(aq)} \mid Ni_{(s)}$

- i) Draw this conventional cell indicating flow of electrons and flow of ions (4 marks)
- ii) Calculate the EMF of the cell given that; $E_{Mg}^{2+}_{(aq)}/Mg(s) = -2.38 \text{ V}$ and $E_{Ni}^{2+}_{(aq)}/Ni(s) = -0.23 \text{ V}$ (2marks)
- iii) Explain what you would observe if a nickel based emulsion paint would be kept in a magnesium vessel (2marks)
- d) Describe a solid-vapour equilibrium giving an example.

(2marks)

Question four (17 marks)

a) A balanced equation for the industrial synthesis of ammonia using the Haber-Bosch process yields only 17-21% ammonia. The process is represented by the equation below;

 $3H_{2(g)} + N_{2(g)}$ \longrightarrow $2NH_{3(g)} +$ heat. Discuss how the yield of ammonia can be increased from the 17-21%. (6 marks)

- b) At 88°C, saturated vapour pressure of benzene and toluene are 953 and 378 mmHg respectively. Calculate the vapour pressure of a benzene-toluene mixture containing 2 mol of benzene per mol of toluene, assuming Rauolts law is obeyed (3marks)
- c) Consider the composition-temperature curve for water and ethanol at sea level;

i) Identify A and B giving a reason
 ii) Describe the effect of point T to distillation of the mixture
 iii) Discuss negative and positive deviations to Raoults Law
 (2marks)
 (4marks)