

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

SPECIAL/SUPPLIMENTARY EXAMINATIONS **2021/2022 ACADEMIC YEAR** THIRD AND FORTH YEAR FIRST SEMESTER EXAMINATIONS FOR THE DEGREE

OF

BACHELOR OF SCIENCE (CHEMISTRY AND INDIUSTRIAL CHEMISTRY)

COURSE CODE: SCH 340

COURSE TITLE:

QUANTUM CHEMISTRY

DATE:

Wednesday, 27th July 2022

TIME: 8.00 - 10.00 am

INSTRUCTIONS TO CANDIDATES

Answer all the Questions

TIME: 2 Hours

Useful Information

 $R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1} \text{ or } 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$

1 atm= 1.01325 bar=760 torr=1.01325 x 10⁵ Pa= 760mmHg

QUESTION ONE (20 MARKS)

- a) The energy required for the ionization of a certain atom is 1.224 x 10⁻¹⁸J. The absorption of a photon of unknown wavelength ionizes the atom and ejects an electron with velocity 3.09 x 10⁶ ms⁻¹. Calculate the wavelength of the incident radiation [4 marks]
- b) The wavefunction of an electron in the lowest energy state of a hydrogen atom is proportional to $e^{-(r/a0)}$, with $a_0=52.9$ pm and r is the distance from the nucleus. Calculate the relative probabilities of finding the electron inside a small volume δV located at:

i. The nucleus

[2 marks]

ii. A distance ao from the nucleus

[2 marks]

c) Discuss any four characteristics of the photoelectric effects

[4 marks]

d) Explain the meaning and consequences of the of the wave-particle duality

[4 marks]

e) Briefly discuss any four postulates of quantum mechanics

[4 marks]

OUESTION TWO (15 MARKS)

- a) The following function represents an unnormalized excited state wavefunctions of the hydrogen atom. Normalize it to 1. $\Psi=[3-r/a_0]e^{-(2r/a_0)}$ [5 marks]
- b) Is the function in (a) above mutually orthogonal with $\psi = r\sin\Theta\cos\Phi \ e^{-(r/a_0)?}$ [7 marks]
- c) Define, justify, and provide examples of zero-point energy.

[3 marks]

QUESTION THREE (20 MARKS)

- a) Calculate the most probable radius (r) at which an electron will be found when it occupies a 1s orbital of a hydrogenic atom of atomic number Z=2. [5 marks]
- b) Starting with the classical relation between kinetic energy and linear momentum, construct operator for kinetic energy [6 marks]
- c) Explain using equations why the ΔE for a particle in a box increases with n^2 [5 marks]
- d) Identify the levels that may arise from the configurations h¹ and g¹ [4 marks]

QUESTION FOUR (15 MARKS)

- a) Explain the origin of spin-orbit coupling and how it affects the appearance of a spectrum.[5 marks]
- b) Normalize the wavefunction $e^{-r/a0}$ used for the hydrogen like atom [5 marks]
- c) Prove that the Schrodinger equation can be used to imply De Broglie relation [5 marks]

.....E.N.D......