(University of Choice) # MASINDE MULIRO UNIVERSITY OF ### SCIENCE AND TECHNOLOGY (MMUST) Main campus # UNIVERSITY SUPPLEMENTARY EXAMINATIONS 2021/2022 ACADEMIC YEAR # THIRD YEAR SECOND SEMESTER EXAMINATIONS ### FOR THE DEGREE OF ### BACHELOR OF SCIENCE AND EDUCATION (SCIENCE) TIME: 8-10 a.m COURSE CODE: SCH 312 COURSE TITLE: RADIATION AND NUCLEAR CHEMISTRY **DATE:** 2nd August, 2022 # INSTRUCTIONS TO CANDIDATES - Answer all the Questions - Attached find periodic table TIME: 2 Hours MMUST observes ZERO tolerance to examination cheating This Paper Consists of 4 Printed Pages. Please Turn Over. ### **QUESTION ONE (17 Marks)** - a. Complete the following nuclear equations that describe the processes used to create these elements.(3 marks) - i. ${}^{244}_{96}Cm + {}^{4}_{2}He \rightarrow ? + {}^{1}_{1}H + 2{}^{1}_{0}n \text{ (1 mark)}$ - ii. $^{238}_{92}U+? \rightarrow ^{246}_{98}Cf + 4^{1}_{0}n (1 \text{ mark})$ - iii. $? + {}^{10}_{5}B \rightarrow {}^{257}_{103}Lr + 5{}^{1}_{0}n (1 \text{ mark})$ - b. Ionizing and non-ionizing radiations are used in different fields. Explain with the use of examples. (2 marks) - c. With the use of an example, describe neutron capture. (2 marks) - d. Give any two electrical effects of ionizing radiation. (2 marks) - e. What is your understanding of cosmic radiation? (2 marks) - f. What is a scintillation counter and how does it work? (2 marks) - g. Knowledge about interaction of ionizing radiation with matter is essential in a variety of areas of nuclear science. Discuss. (4 marks) ### **QUESTION TWO (17 Marks)** - a. Explain the theory behind radiocarbon-14 dating. (4 marks) - b. Describe how E. Rutherford and F. Soddy stumbled upon radioactive decay. (4 marks) - c. Give the two very significant consequences of the early study of the emanations from thorium, radium, and actinium. (2 marks) - d. Nuclear stability can be considered from both a kinetic and a thermodynamic point of view. Differentiate between thermodynamic stability and kinetic stability. (3 marks) - e. Depending on the energy imparted, radiation interaction with matter may lead to excitation or ionization. Differentiate between the two. (2 marks) - f. How does radiation affect an unborn child? (2 marks) ### **QUESTION THREE (18 Marks))** - a. Illustrate the following terms: - i. Beta production (2 marks) - ii. Alpha production (2 marks) - iii. Gamma ray production (2 marks) - b. In radioactive decay, A and Z are conserved. What does this mean? (2 marks) - c. Answer the following questions - i. What is the half-life equation for radioactive decay processes? (1 mark) - ii. How does the half-life depend on how many nuclides are present? (1 mark)- - iii. Uranium-238 is one of the radioactive nuclides sometimes found in soil. It has a half-life of 4.51×10^9 years. What fraction of a sample is left after 9.02×10^9 years? (3 marks) **d.** Briefly explain how nuclear reactors work. (5 marks) # **QUESTION FOUR (18 Marks)** - a. What is your understanding of electron-positron pair production? (2 marks) - i. Explain why ¹⁴C and ³²P radioactive nuclides would be very helpful in learning about metabolic pathways. (2 marks) - ii. Why is I-131 useful for diagnosis of diseases of the thyroid? (2 marks) - **b.** The biological effects of a particular source of radiation depend on several factors. List and explain some of these factors.(8 marks) - **c.** Although gamma rays are far more penetrating than alpha particles, the latter are more likely to cause damage to an organism. Why? (2 marks) - **d.** How is radiation used in cancer treatment? (2 marks) | | | | 1A
(1) | 1 | | | | N | vetals (t | main-gro
ransition
nner tra | ۱) | | | | u. | | | | | 8/ | |--|--------|-------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|-------------------------|--------------------------|-----------------------------------|--------------------|--------------------------|--------------------------|--------------------------|---|--------------------------|--------------------------|--------------------------|-------------------------|--------------| | | | | 1 | İ | | | | | Metalloic | | namon, | | | | | | | | | 2 | | | | 1 | H
1.008 | 2A
(2) | 2A Nonmetals | | | | | | | | | 3A
(13) | 4A
(14) | 5A
(15) | 6A
(16) | 7A
(17) | 4.0 | | | | | 2 | 3
Li
6,941 | 4
Be
9.012 | | | | | | | | | | | 5
B
10.81 | 6
C
12.01 | 7
N
14.01 | 8
O
16.00 | 9
F
19.00 | 1
N
20 | | | | - | 11 | 12 | TRANSITION ELEMENTS | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | | | 3 | Na
22.99 | Mg
24.31 | 3B
(3) | 4B
(4) | 5B
(5) | 6B
(6) | 7B
(7) | (8) | 8B -
(9) | (10) | 1B
(11) | 2B
(12) | AI
26.98 | Si 28.09 | P
30.97 | S
32.07 | CI
35.45 | 39 | | | Period | 4 | 19
K
39.10 | 20
Ca
40.08 | 21
Sc
44.96 | 22
Ti
47.88 | 23
V
50.94 | 24
Cr
52.00 | 25
Mn
54.94 | 26
Fe
55.85 | 27
Co
58.93 | 28
Ni
58.69 | 29
Cu
63.55 | 30
Zn
65.39 | 31
Ga
69.72 | 32
Ge
72.61 | 33
As
74.92 | 34
Se
78.96 | 35
Br
79.90 | 83 | | | | 5 | 37
Rb
85.47 | 38
Sr
87.62 | 39
Y
88.91 | 40
Zr
91.22 | 41
Nb
92.91 | 42
Mo
95.94 | 43
Tc
(98) | 44
Ru
101.1 | 45
Rh
102.9 | 46
Pd
106.4 | 47
Ag
107.9 | 48
Cd
112.4 | 49
In
114.8 | 50
Sn
118.7 | 51
Sb
121.8 | 52
Te
127.6 | 53

 126.9 | 13 | | | | 6 | 55
Cs
132.9 | 56
Ba
137.3 | 57
La
138.9 | 72
Hf
178.5 | 73
Ta
180.9 | 74
W
183.9 | 75
Re
186.2 | 76
Os
190.2 | 77
Ir
192.2 | 78
Pt
195.1 | 79
Au
197.0 | 80
Hg
200.6 | 81
TI
204.4 | 82
Pb
207.2 | 83
Bi
209.0 | 84
Po
(209) | 85
At
(210) | F
(2: | | | | 7 | 87
Fr
(223) | 88
Ra
(226) | 89
Ac
(227) | 104
Rf
(261) | 105
Db
(262) | 106
Sg
(266) | 107
Bh
(262) | 108
Hs
(265) | 109
Mt
(266) | 110
(269) | 111 (272) | 112
(277) | As of mid-1999, elements 110 through 112 have been named. | | | | | | | | | | | | _/ | - | | | | | | _ | | | | | | | | | | | | | | | ,' | IN | INER T | RANSI | TION EI | LEMEN | TS | | | | | | | | _ | | | | | 6 | 6 Lanthanides | | 58
Ce
140.1 | 59
Pr
140.9 | 60
Nd
144.2 | 61
Pm
(145) | 62
Sm
150.4 | 63
Eu
152.0 | 64
Gd
157.3 | 65
Tb
158.9 | 66
Dy
162.5 | 67
Ho
164.9 | 68
Er
167.3 | 69
Tm
168.9 | 70
Yb
173.0 | 71
Lu
175.0 | | | | | | 7 Actinides | | 90
Th
232.0 | 91
Pa
(231) | 92
U
238.0 | 93
Np
(237) | 94
Pu
(242) | 95
Am
(243) | 96
Cm
(247) | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No
(259) | 103
Lr
(260) | | | |