175

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITRY EXAMINATIONS 2021/2021ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE
OF
BACHELOR OF TECHNOLOGY
IN
BUILDING CONSTRUCTION

COURSE CODE:

BTB 314

COURSE TITLE:

CONSTRUCTION AND ENGINEERING

MATERIALS II

DATE: 3RD AUGUST 2022

TIME: 11 A.M. - 1 P.M.

INSTRUCTIONS:

- 1. This paper contains FIVE questions
- 2. Answer ONE and any other THREE questions
- 3. Marks for each question are indicated in the parenthesis.
- 4. No unauthorized materials are allowed in the examination room
- 5. Examination duration is 2 Hours

MMUT observes ZERO tolerance to examination cheating

This Paper Consists of 6 Printed Pages. Please Turn Over.

BTB 314: Construction and Engineering Materials II

QUESTION 1

- a) Discuss how Water-Cement Ratio affects concrete mix. (4.5 marks)
- b) Describe the heat of hydration against time.

(4 marks)

c) Describe the dry process of cement manufacture .

(9 marks)

QUESTION 2

a) List the classification of aggregates.

(3 marks)

- b) Discuss the setting time required in the process of mixing; transporting, placing and compaction concrete using Ordinary Portland Cement. (3.5 marks)
- c) Outline the factors that affect concrete shrinkage.

(5 marks)

d) Define creep and state the effects of Creep on mass concrete and reinforced concrete. (6 marks)

e) **QUESTION 3**

Design a mix with a mean 28 days compressive strength (measured on standard cubes) of 40 MPa with a 8% standard deviation and 10% defective rate (k = 1.28); slump of 125 mm; crushed aggregates with a maximum size of 10 mm; specific gravity of aggregates of 2.65; 60 per cent of fine aggregates passes the 600 μ m sieve; no air entrainment required; ordinary Portland cement to be used.

(17.5 mark)

QUESTION 4

Explain the occurrence of the different cracks shown in Figure 4

(17.5 marks)

QUESTION 5

a) List the conditions that courses of Delayed Ettringite Formation in Cement.

(2.5 marks)

b) Describe Thaumasite attack on concrete.

(5 marks)

c) Describe Chloride attack on concrete structure.

(5 marks)

d) Describe how to conduct a Carbonation test on concrete specimens to be tested.

(5 mark)

QUESTION 6

a) List ways Fly ash can modify the fresh concrete properties?

(7 marks)

b) Explain the benefits of Micro Silica in concrete.

(3.5 marks)

c) Discuss the four methods of processing molten slag.

(4 marks)

d) Describe fibres advantages over reinforcement bar in concrete.

(3 marks)

Type of cement	Type of course aggregate	Compressive strengths (N/mm²)				
		3	Age 7	(days) 28	91	
Ordinary Portland						
(OPC)	Uncrushed	22	30	42	49	
sulphate- resisting Portland (SRPC)	Crushed	27	36	49	56	
Rapid- hardening Portland (RHPC)	Uncrushed	29	37	48	54	
	Crushed	34	43	55	61	

 $1 \text{ N/mm}^2 = 1 \text{ MN/m}^2 = 1 \text{ MPa}$ (see footnote on earlier page).

Table 1. Approximate compressive strength (N/mm^2) of concrete mixes made with a free-water/cement ratio of 0.5

Slump (mm) Vebe time(s)		10-30 6-12	30-60 3-6	60-18 0-3
Type of aggregate m)				***************************************
Uncrushed	150	180	205	225
Crushed	180	205	230	250
Uncrushed	135	160	180	195
Crushed	170	190	210	225
Uncrushed	115	140	160	175
Crushed	155	175	190	205
	Type of aggregate im) Uncrushed Crushed Uncrushed Crushed Uncrushed	Type of aggregate sm) Uncrushed 150 Crushed 180 Uncrushed 135 Crushed 170 Uncrushed 170 Uncrushed 170	>12 6-12 Type of aggregate sm) Uncrushed 150 180 Crushed 180 205 Uncrushed 135 160 Crushed 170 190 Uncrushed 115 140	> 12 6-12 3-6 Type of aggregate im) Uncrushed 150 180 205 Crushed 180 205 230 Uncrushed 135 160 180 Crushed 170 190 210 Uncrushed 115 140 160

Table 2. Approximate free-water contents (kg/m³) required to give various levels of workability

Starting line using data from Table 2

80

70

9

Compressive strength (N/mm²)

30

20

9

Figure 2. Estimated wet density of fully compacted concrete

280 780

BTB 314: Construction and Engineering Materials II

Figure 1. Relationship between compressive strength and free-

water/cement ratio.

0.8

0.7

9.0

0.4

; **į**

Figure 3. Recommended proportions of fine aggregate according to percentage passing a 600 μ m sieve

Figure 4 Schematic representations of the various types of cracking which can occur in concrete