1750

1

15.5

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR SEMESTER ONE SUPPLEMENTARY/SPECIAL EXAMINATIONS

FOR THE DEGREE

OF

BACHELOR OF SCIENCE IN CIVIL AND STRUCTURAL ENGINEERING

COURSE CODE:

CSE 411

COURSE TITLE:

STRUCTURAL STEEL DESIGN

DATE:

distribution of

04 OCTOBER 2022

TIME: 9:00-11:00 HRS

INSTRUCTIONS:

1. This paper contains FIVE questions

- 2. Attempt ALL questions in Section A and ANY TWO questions in SECTION B
- 3. Marks for each question are indicated in the parenthesis.
- 4. You are permitted to use a printed copy of (a)BS5950 as well as (b)Steel Section Tables. No additional information should be written.

Examination duration is 2 Hour

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 6 Printed Pages. Please Turn Over.

SECTION A {COMPULSORY}

Question One

(30 marks)

- a) Briefly describe the possible failure modes for bolted connections [6mks]
- b) Given the truss structure below
 - i. Determine the adequacy of using L60x60x5 grade S355 steel section as member A-B [14mks]
 - ii. Determine the adequacy of using L60x60x5 grade S355 steel section as member B-C [10mks]

Hint. $L_E = 1.0 L_o$

SECTION B (Answer Any TWO Questions)

Question Two

::31

113

1171

(20 marks)

- a) Briefly describe the failure mechanisms that a steel column may fail [4 marks]
- b) Determine the load capacity for a column to carry a compressive axial load made of (Rectangular Hollow Section) RHS 60x40x4 angle section of grade S355 steel. The column is 2.25m tall and is fully restrained at the bottom and pinned at the top.

[16 marks]

Question Three

(20 marks)

Investigate the adequacy of a 6.5 metre long simply supported Grade S275 406x140UB46 steel section loaded with uniformly distributed permanent load of 20 kN/m and variable action 7 kN/m load, if the deflection is to be limited to span/250

- (a) Calculate and draw the shear force diagram and bending moment diagram (2 mks)
- (b) Classify the section accordingly

(3 mks)

(c) Check the adequacy of Moment capacity of the section

(6 mks)

(d) Check the adequacy of shear capacity of the section

(6 mks)

(e) Check the deflection of the member

(3 marks)

 $i^{\frac{1}{2}}$

1

(20 marks)

Question Four
Consider the following Pratt truss bridge;

Determine

(a) Calculate the reactions

(3 mks) (17 mks)

(b) Calculate the member forces

Cui	culace the	THEITIBET TOTCES	
	Member	Force, magnitude, kN	Compressive (C) or Tensile (T)
1	GH		e ar e i e e
2	FH		1 1 1 1
3	FG		
4	EG		at the Tour
5	EF		
6	DF		A A STATE OF THE S
7	DE		, <u>Kh </u>
8	BD		*
9	BC		74.4.00
10	AB		3
11	BE		
12	AC		
13	CE		

--- end ----

MEMORY AIDE/ REFERENCE

i), ... Calculation of deflections for simple supported beams

Deflection due to point load (P kN) at midspan of beam L m long

$$\delta = \frac{Pl^3}{48EI}$$

Deflection due to a uniformly distributed load (ω kN/m) of a simply supported beam L

 $\frac{5\omega l^4}{384EI}$

meters long

Cet

11112

ii) Bolt Areas

Diameter of bolt=d (mm)	12	16	20	24	30
Area=A _s (mm²)	84.3	157	245	3 5 3	561

iii) : vii) Loading

BS EN 1990-A1.3.2(4) $UDL_{Ultimate} = 1.35 \times G_k + 1.5 \times Q_k$

iv) Angle connected with one leg

With 2 bolts

$$N_{u,Rd} = \frac{\beta_2 A_{net} f_u}{\gamma_{M2}}$$

EC3-1-8 3.10.3

With 3 or more bolts

$$N_{u,Rd} = \frac{\beta_3 A_{net} f_u}{\gamma_{M2}}$$

Pitch	p_1	$\leq 2.5 d_o$	$\geq 5.0 d_o$
2 bolts	β_2	0.4	0.7
3 bolts or more	β_3	0.5	0.7

0

v) Concrete compressive strength

			r	
Concrete class	C25/30	C30/37	C35/40	C40/50
f_{ck} (N/mm ²)	30	37	40	50
f_{cd} (N/mm ²) Design compressive strength	14.2	16.8	17	22.7

3.1.3 Other properties

For the elastic properties of steel, the following values should be used.

- Modulus of elasticity:

 $E = 205\ 000\ \text{N/mm}^2$

- Shear modulus:

G = E/[2(1 + v)]

- Poisson's ratio:

v = 0.30

- Coefficient of linear thermal expansion

(in the ambient temperature range):

 $\alpha = 12 \times 10^{-6} \text{ per }^{\circ}\text{C}$

Rectangular

60x40x4

Hollow Section

Section properties Universal Equal Universal Column Angle Beam 60x60x5 305x305x97 406x140x46 4.57 kg/m 46.0 96.9 Mass per metre 307.9 60 403.2 h mm Depth of section 60 142.2 305.3 b mm Width of section 1.64 С mm

5.64 60 40 6.8 9.9 mm Web t_{w} 11.2 15.4 **Thickness** Flange t_f mm 4 Т mm 15.2 10.2 r mm 8 root r_1 mm Root radius 4 toe mm r_2 Depth between 360.4 246.7 D mm fillets 24.9 53.0 Web cw/tw 8.6 Cf/tf 5.13 Ratios for local Flange 12.0 cw/t buckling 7.00 c_f/t 32.8 19.4 15700 22200 Axis y-y cm4 17.0 19.4 538 7310 cm4 Axis z-z Second moment of 30.7 cm4 area Axis u-u 8.03 cm4 ∆xis v-v 1.82 2.14 16.4 13.4 cm Axis y-y 1.54 3.03 7.69 cm Axis z-z Radius of gyration 2.3 cm ∧xis **u-u** 1.17 cm Axis v-v 10.9 778 1450 4.45 cm3 Axis y-y Elastic modulus 479 4.45 8.52 75.7 ∧xis z-z cm3 1590 13.8 888 cm3 Axis **y-y** Plastic modulus 726 10.3 118 cm3 Axis z-z 123 5.82 7.19 58.6 Area of section cm2