

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

SPECIAL/SUPPEXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER EXAMINATIONS

FOR THE AWARD OF DIPLOMA IN ENGINEERING

COURSE CODE: DEE 082

COURSE TITLE: CONTROL SYSTEMS

DATE: Thursday 6th Oct, 2022 **TIME:** 8.00a.m – 10.00A.m

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating
This Paper Consists of 4 Printed Pages. Please Turn Over.

Question One

a. Define the following terms as applied in control engineering:

i.	Self loop			[1 mark]
	Path			[1 mark]
iii.	Sink			[1 mark]
iv.	Node			[1 mark]
V.	Locus		*	[1 mark]
vi.	Loop gain			[1 mark]

b. Develop the Nyquist path for the Type 0 continuous system below. [5 marks]

$$GH = \frac{1}{(s+1)}$$

- Devise a control system to fill a container with water after it is emptied through a stopcock at the bottom. The system must automatically shut off the water when the container is filled. Use clearly labeled diagram. [2 marks]
- d. Construct a signal flow graph for the simple resistance network given in Figure 1d below and find its transfer function using the gain formula. [6 marks]

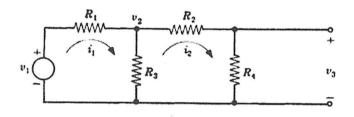


Figure 1d

- e. Determine the angle and magnitude of GH(j2) for $GH=k/s(s+2)^2$ hence find the value of k that satisfies |GH(j2)| = 1 [5 marks]
- f. Give any six properties of mapping of P(s) to P(z).

[6 marks]

Question Two

- a. Determine;
 - i. The condition under which the Bode magnitude plot for a pair of complex poles has a break at a nonzero, finite value of ω [5 marks]
 - ii. The frequency at which the peak value occurs

[3 marks]

b. Find the angles and centre of, and sketch the asymptotes of

[6 marks]

$$GH = \frac{k(s+2)}{(s+1)(s+3+j)(s+3-j)(s+4)}$$

c. Find the breakaway point between 0 and -1 for

[3 marks]

$$GH = \frac{k}{s(s+1)(s+3)(s+4)}$$

d. Determine the Bode form and Bode gain for the transfer function [3 marks]

$$GH = \frac{k(s+2)}{s^2(s+4)(s+6)}$$

Question Three

a. Outline the four properties of polar plots.

[4 marks]

b. Consider the Figure 3b below; find the position, velocity, and acceleration error constants. [6 marks]

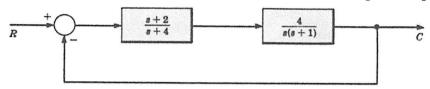
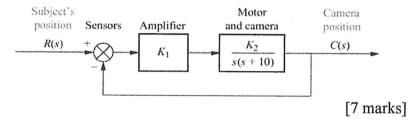



Figure 3b

- c. Determine if the following characteristic equation represents a stable system using the Routh stability criterion $S^3 + 4S^2 + 8S + 12 = 0$. [3 marks]
- d. Consider the continuous system in Figure below. The design value for the gain factor is K, plot a sketch of the root locus.

Question Four

- a. With the aid of appropriate sketches and equations give any *three* singularity functions used in control systems.
 [3 marks]
- b. Determine the damping ratio ζ , undamped natural frequency ω_n , damping coefficient α , damped natural frequency ω_d , and time constant τ for the following second-order control system; [4 marks]

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 9y = 9u$$

- c. Compare the proportional, integral and differential controllers. [3 marks]
- d. Construct the polar plot of the Type 1 digital control system with open loop transfer function. [10 marks]

$$GH = \frac{k/4}{(z-1)\left(z-\frac{1}{2}\right)}$$

Question Five

a. Determine the transfer function of the system plotted in the figure 5a below if it has a gain of 9. [4 marks]

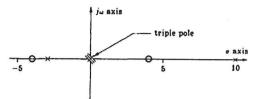


Figure 5a

- b. Show that the dB magnitude-phase angle for a pole of order l at the origin of the s-plane $1/(j\omega)^l$ is a straight line parallel to the dB magnitude axis with an abscissa of $-90l^0$ for $\omega \ge 0$. [6 marks]
- c. Construct a sketch of the dB magnitude-phase angle plot for the continuous time open loop transfer function [10 marks]

$$GH = \frac{2}{s(1+s)(1+s/3)}$$