15.

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

SPPLIMENTARY/SPECIAL EXAMINATIONS 2021/2022 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND COMMUNICATION ENGINEERING

COURSE CODE:

ECE 416

COURSE TITLE:

DIGITAL COMMUNICATION SYSTEMS II

DATE: Thursday, 6th October,2022

TIME: 12-2pm

INSTRUCTIONS TO CANDIDATES

Question ONE (1) is compulsory Answer Any Other Two (2) questions

TIME: 3 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- (a) Assume a TV signal having a bandwidth of 4.2MHz is to be transmitted using binary PCM system using 256 quantization levels. Determine the following:
 - (i) the PCM code word length
 - (ii) Transmission bandwidth
 - (iii) the PCM stream bit rate
 - (iv) Signal to Quantization Noise Ratio (SQRN)

(12 marks)

- (b) Assume that you are tasked to design a PCM system to transmit an analogue signal with an accuracy of $\pm 0.2\%$ at full scale. If the signal has bandwidth of 20 Hz 12,000Hz and amplitude range of ± 10 volts, calculate:
 - (i) The number of bits in each PCM word.
 - (ii) The minimum bit rate of the PCM system.

(6 marks)

- (c) (i) Calculate the amount of information is a PCM system in which the binary digits occur with the same equal probabilities.
 - (ii) An analog signal is band-limited at 8KHz and is quantized in 8 levels $\{x_1, x_2, x_3, ... x_8\}$ with probabilities $P(x_1) = \frac{1}{2}$, $P(x_2) = \frac{1}{5}$, $P(x_3) = \frac{1}{5}$, $P(x_4) = \frac{1}{5}$, $P(x_5) = \frac{1}{10}$, $P(x_6) = \frac{1}{10}$, $P(x_7) = \frac{1}{20}$ and $P(x_8) = \frac{1}{20}$. If the signal is sampled at 20 Kbps, find the entropy and the rate of information. (4 marks)

(6 marks)

- (d) (i) Describe the causes and effects of intersymbol interference in communication systems.
 - (ii) Describe a commonly used method for analysing intersymbol interference in the laboratory.

(6 marks)

QUESTION TWO (20 MARKS)

- (a) A Discrete memoryless system is encoded as shown below. Calculate:
 - (I) Code efficiency
 - (II) Code redundancy

a _i	P(a _i)	Code
a ₁	0.71	0
a ₂	0.20	10
a ₃	0.05	110
a ₄	0.04	111

(6 marks)

- **(b)** Draw the baseband coding waveforms for the bit sequence 1100110 for the following digital baseband coding schemes:
 - (I) AMI
 - (II) Split Phase Manchester
 - (III) M-ary with M=4

(6 marks)

- (c) A discrete source produces five independent symbols with probabilities $P(x_1)=0.4$, $P(x_2)=0.19$, $P(x_3)=0.16$, $P(x_4)=0.15$, $P(x_5)=0.1$.
 - (i) Design a Shannon-Fano code for the system
 - (ii) Calculate the Code efficiency

(8 marks)

QUESTION THREE (20 MARKS)

- (a)(i) Calculate the data rate of an STS-9 in a Synchronous Optical Network (SONET) transmission system.
 - (ii) What is the user data rate, i.e data rate excluding overhead in a STS-9 SONET network.

(10 marks)

- (b)(i) State four advantages of structured cabling for the design of digital communication systems.
 - (ii) Give four reasons why one would choose to use fibre optic cables to copper cables in a digital communication systems.

(10 marks)

QUESTION FOUR (20 MARKS)

- (a) (i) Name and describe the modulation scheme used in the original 1200 bps modem.
 - (ii) With the aid of a diagram, describe the operation of a FTTH Triple play system.

(10 marks)

- (b) (i) With the aid a block diagram, describe the operation of the Integrated Services Data Network (ISDN).
 - (ii) Describe a simple system that can be used to multiplex TDM data streams onto a fibre optic cable.

(10 marks)

