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Instructions to Candidates
. This paper contains FIVE (5) questions
. Answer ALL questions in Section A and ANY TWO in Section B
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SECTION A: Answer ALL questions [30 Marks]

Question ONE
a) 1 Divide a polynomial f(x)=x*~-5x+5x>+5x—6by the monomial factorx—2. Is

x =2aroot? [3 Marks]
b)  Given the data

0.90 1.42 1.30 1.55 1.631.32 1.35 1.471.95 1.66 1.96 1.47 1.92 1.35 1.051.85

1.74 1.65 1.78 1.71 2.29 1.82 2.06 2.14 1.27

Determine

1. the mean, [3 Marks]

ii. the standard deviation, /3 Marks]

iii. the variance, [I Mark]

iv. the coefficient of variation, [2 Marks]

v. the 95% confidence interval for the mean. [3 Marks]

vi. construct a histogram using a range from 0.6 to 2.4 with intervals of 0.2. /5
Marks]

c) Use least-squares regression to fit a straight line to

X 0 2 4 6 9 11 12 15 17 19
y 5 6 7 6 9 8 7 10 12 12

Along with the slope and intercept, compute the standard error of the estimate and the
correlation coefficient. /10 Marks]

SECTION B: Answer any TWO questions [40 Marks)

Question TWO
Given the system of equations
— 3%, 4 1%, =2
X +2x,—x,=3
Sx,—2%,=2
(a) Compute the determinant. /4 Marks]
(b) Use Cramer’s rule to solve for the x’s. [6 Marks]

(c) Use Gauss elimination with partial pivoting to solve for the x’s. /8 Marks]
(d) Substitute your results back into the original equations to check your solution [2Marks]

Question THREE
Employ inverse interpolation to determine the value of x that corresponds to f(x) =0.85 for

the following tabulated data:

X 0 1 2 3 4 5

y 0 0.5 0.8 0.9 0.941176 | 0.961538

Note that the values in the table were generated with the function



f)=x7/1+x%)

i). Determine the correct value analytically. [I Marks]

ii). Use cubic interpolation of x versus y. [5 Marks]

iii). Use inverse interpolation with quadratic interpolation and the quadratic formula. /6
Marks]

iv). Use inverse interpolation with cubic interpolation and bisection. /6 Marks]

v). For parts (ii) through (iv) compute the true percent relative error. /2 Marks]

Question FOUR
Linear algebraic equations can arise in the solution of differential equations. For example,

the following differential equation derives from a heat balance for a long, thin rod (Fig. 4-
1).
d*T

2

+h (T, -T)=0 (4-1)
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Figure 4-1. A noninsulated uniform rod positioned between two walls of constant but different temperature.
The finite difference representation employs four interior node.

B

where T = temperature (°C'), x = distance along the rod (m), # = a heat transfer coefficient
between the rod and the ambient air (m7”), and T, = the temperature of the surrounding air
(°C). This equation can be transformed into a set of linear algebraic equations by using a
finite divided difference approximation for the second derivative,
a’T _ T;H _27; +7;—1
x> Ax?
where 7, designates the temperature at node i. This approximation can be substituted into

(4-2)

Eq. (4-1) to give
Ly =20+ T +h AT, ~-T)=0 (4-3)
This equation can be written for each of the interior nodes of the rod resulting in a
tridiagonal system of equations. The first and last nodes at the rods ends are fixed by
boundary conditions.
a) Develop an analytical solution for Eq. (4-1) for a 10-m rod with 7, = 20, T(x = 0) =
40, T(x = 10) =200 and 4 = 0.02.

b) Develop a numerical solution for the same parameter values employed in (a) using a
finite-difference solution with four interior nodes as shown in Fig. 4-1 ( x =2 m)
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