

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2022/2023 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER EXAMINATIONS

FOR THE DEGREE

OF

ADDITION OF SCIENCE IN ELECTRICAL

THE SEAVING ONLYING STORES | COMMUNICATION ENGINEERING

COURSE CODE:

ECE 212

COURSE TITLE:

ELECTRIC CIRCUIT THEORY AND

ANALYSIS I

DATE: 5TH DECEMBER, 2022

TIME: 3:00 PM - 5:00 PM

INSTRUCTIONS TO CANDIDATES

ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS. QUESTION ONE CARRIES 30 MARKS AND ALL OTHERS 20 MARKS EACH.

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 4 Printed Pages. Please Turn Over.

(a) Explain briefly the difference between linear and nonlinear resistors

[4marks]

(b) Differentiate the following types of elements, giving examples in each case

[6marks]

- i. Nonlinear and linear elements
- ii. Unilateral and bilateral elements
- iii. Distributed and lumped elements
- (c) State any **THREE** reasons why a sinusoidal waveform is the preferred in electrical engineering. [3marks]
- (d) In the series-parallel circuit given in Figure Q1(d), determine;
- (i) the total resistance of the circuit.

[3marks]

(ii) the total current flowing through the circuit.

[1mark]

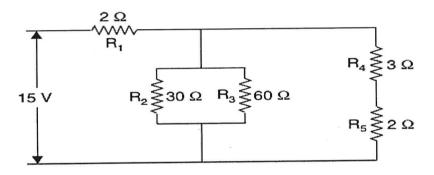


Figure Q1(d)

(e) Solve the circuit of Figure Q1(e) using Mesh Current Analysis method.

[4marks]

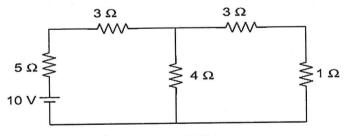
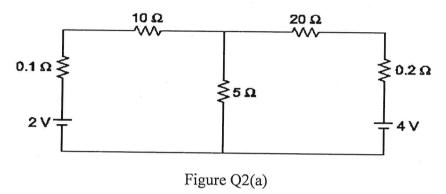


Figure Q1(e)

(f) An alternating current i is given by; i = 141.4 Sin 314t. Determine;


(i)	the maximum value	[11	mark]
(ii)	frequency	[1:	mark]
(iii)	time period and	[1:	mark]
(iv)	the instantaneous value when t is $3 ms$.	[2:	marks]
()			1 7
(g) State any FOUR limitations of Ohms law			marks]

(a)(i) State Kirchhoff's laws

[2mark]

(ii) Determine the current in each branch of the circuit using Kirchhoff's law

[4marks]

(b) Determine the value of current flowing through the 1Ω resistor using Superposition theorem.

[4marks]

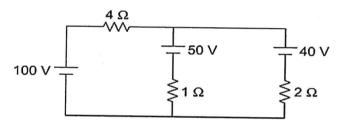


Figure Q2(b)

(c) Determine the currents through the resistance R₃ and R₄ using Node Voltage Analysis. [6marks]

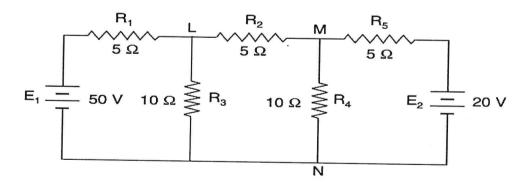


Figure Q2(c)

(d) Using Thevenin's theorem, find the current in the 6Ω resistor;

[4marks]

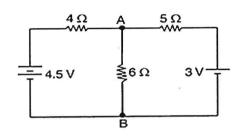


Figure Q2(d)

QUESTION 3

(20marks)

(a) For the circuit shown in FigQ3(a), two impedances consist of resistance of 15Ω and series connected inductance of 0.04 H and resistance of 10Ω , inductance of 0.01 H and a capacitance of $100~\mu F$, all in series are connected in series and are connected to a 230 V, 50 Hz a.c. source. Determine:

(i) current drawn
(ii) voltage across each impedance
(iii) total p.f

15 Ω

0.04 H

10 Ω

0.01 H

100 μF

110 μF

12 μF

13 μF

14 μF

15 μF

Figure Q3(a)

(b) A 230V, 50 Hz a.c. supply is applied to a coil of 0.06H inductance and 2.5Ω resistance connected in series with a 6.8 μF capacitor. Determine;

(i) impedance [3marks]
(ii) current [1mark]
(iii) phase angle between current and voltage [1mark]
(c) State the THREE advantages of a.c. compared to a d.c system [3marks]

(d) A coil consists of 2000 turns of copper wire having a cross-sectional area of 0.8 mm². The mean length per turn is 80 cm and the resistivity of copper is $0.02\mu\Omega$ -m. Find the resistance of the coil and power absorbed by the coil when connected across 110 V d.c. supply.

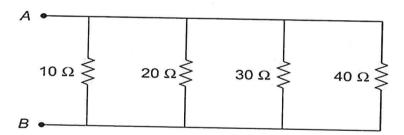
[4marks]

OUESTION 4

(20marks)


(a) (i) The current in a 2H inductor varies at a rate of 2A/s. Find the voltage across the inductor and the energy stored in the magnetic field after 2 s. [3marks]

- (ii) A capacitor having a capacitance 2 μF is charged to a voltage of 1000 V. Calculate the stored energy in joules. [3marks]
- (b) A residential flat has the following average electrical consumptions per day:
 - (i) 4 tube lights of 40 watts working for 5 hours per day;
 - (ii) 2 filament lamps of 60 watts working for 8 hours per day;
 - (iii) 1 water heater rated 2 kW working for 1 hour per day;
 - (iv) 1 water pump of 0.5 kW rating working for 3 hours per day.


Assuming the month has 30 days, determine the cost of energy per month if 1 kWh of energy (i.e., 1 unit of energy) costs Kshs. 3.50 [6marks]

(c) Determine the total amount of power in the series circuit

[4marks]

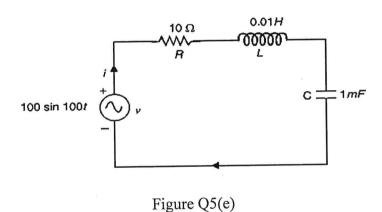
(d) Determine the parallel resistance between points A and B of the circuit shown [4marks]

QUESTION 5

[20marks]

(a)Define the following terms as applied in ac circuit theory

[3marks]


- i. Period
- ii. Amplitude
- iii. Frequency
- (b) A coil has a resistance of 5Ω and an inductance of 31.8 mH. Determine the current taken by the coil and power factor when connected to 200 V, 50 Hz supply. [4marks]

- (c) A capacitance of 20 μF and a resistance of 100 ohms are connected in series across 120 V, 60 Hz mains. Determine the current and power factor. [4marks]
- (d) A resistance 12 Ω , an inductance of 0.15 H and a capacitance of 100 μF are connected in series across a 100 V, 50 Hz supply. Determine the current and power factor of the circuit.

[5marks]

(e) Given a circuit in Figure Q5(e), determine the circuit current using Kirchhoff's law

[4marks]

