

(The University Of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY EXAMINATIONS

2022/2023 ACADEMIC YEAR, SECOND SEMESTER

SECOND YEAR MAIN EXAMINATIONS

FOR THE DEGREE OF

 $_{\rm I}$ BACHELOR OF SCIENCE IN DISASTER PREPAREDNESS AND ENGINEERING MANAGEMENT

COURSE CODE: DPG 206

COURSE TITLE: SPATIAL STATISTICS

3-5 PM TIME: 8-00 AM 10.00 AM

DATE: THURSDAY, 17TH APRIL, 2023

<u>Instruction to the candidates:</u>
Answer question ONE (COMPULSORY) and any other TWO questions

Time: 2 hours

This paper consists of 3 printed pages. Please turn over.

SECTION I: Answer ALL the questions in this section

QUESTION ONE - 30 MARKS (COMPULSORY)

- (a) Differentiate, giving an example in each case, between geostatistical, areal and point data [5 mks]
- (b) Consider the spatial process $\{Z(s): s \in D\}$ with zero mean and the following semi-variogram

 $\gamma(h) = \left\{ egin{array}{ll} au^2 \sigma^2 h, & ext{if } h > 0 \ 0, & ext{if } h = 0 \end{array}
ight.$

- (i) Define what it means for a process to be weakly stationary. [2 mks]
- (ii) By determining the sill (variance) of thus process from the semi-variogram, determine if the process is weakly stationary.
- (c) Suppose that $\{Z(s): s \in D\}$ is a weakly stationary geostatistical process. Fix a constant $\tau \in \mathbb{R}$, and let G denote the set of locations s for which $Z(s) > \tau$.
 - (i) Letting Y(s) = 1 for each $s \in G$, explain why $\{Y(s) : s \in D\}$ is a point process. [2
 - (ii) Letting $W(s) = Z(s) \tau$ for each $s \in G$, explain why $\{W(s) : s \in D\}$ is a marked
 - (iii) Explain why we could be interested in studying processes such as Y(s) and W(s). [2 mks
- (d) Explain the goals of geostatistical data.

[5 mks]

(e) Explain the main steps in exploratory data analysis.

4 mks

(f) Consider a homogeneous Poisson process $Z(A) \sim \text{Poisson}(\lambda|A)$, where |A| is the size of the set A and λ is the constant first order intensity function. Now suppose a Bayesian approach to inference is adopted and the prior distribution for λ is given by $\lambda \sim \text{Gamma}(a, b)$ for some constants (a, b). Compute the posterior distribution for λ given the data Z(A), that is, what distribution is $f(\lambda|Z(A))$? [5 mks]

SECTION II: Answer any TWO questions from this section

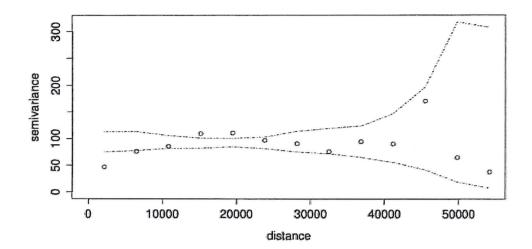
QUESTION TWO - 20 MARKS

(a) Suppose that $\{Z(s): s \in D\}$ is a stationary isotropic geostatistical process with zero mean and covariance function given by

$$C(h) = \left\{ egin{array}{ll} \sigma^2 \exp\left(-rac{h}{\phi}
ight), & ext{if } h > 0 \ \sigma^2 + au^2, & h = 0 \end{array}
ight.$$

- (i) Compute C(3) for $\sigma = 2$ and $\tau = 5$ when (i) $\phi = 0.5$ and (ii) $\phi = 2$. Comment on the change of correlation range with the change in ϕ .
- (ii) Giving reasons for your answer, what are the range, sill, nugget, and partial sill for this covariance model?
- (iii) In terms of the covariance function, derive an expression for the semi-variogram.
- (iv) Sketch the shapes of covariance and the variogram functions for the model above. [4 mks

(b) A binned empirical semi-variogram was plotted of a data set together with 95% Monte Carlo envelops, and ythe plot is as shown below.



- (i) Describe two disadvantages with the estimation of the binned empirical semi-variogram. [2 mks]
- (ii) Estimate the nugget, sill and range of the process.

2 mks

(iii) What do you conclude about the presence of spatial autocorrelation in these data? [2 mks]

QUESTION THREE - 20 MARKS

- (a) Suppose that $\{Z(\mathbf{s}) : \mathbf{s} \in D\}$ for $D \subset \mathbb{R}^2$ is a stationary Gaussian process with zero mean and an isotropic Gaussian covariance function with parameters $\tau^2 = 0$, $\sigma^2 > 0$ and $\phi > 0$.
 - (i) Write down the log likelihood function for the data $\mathbf{z} = (z(\mathbf{s}_1), \dots z(\mathbf{s}_n))$ [3 mks]
 - (ii) Derive the maximum likelihood estimator of σ^2 in terms of ϕ .

5 mks

- (iii) Using this estimator of σ^2 , write down the profile likelihood only in terms of ϕ . Using your expression, explain why there is no closed form expression for maximum likelihood estimator of ϕ . [5 mks]
- (b) Let $\{Z(\mathbf{s}): \mathbf{s} \in D\}$ for $D \subset \mathbb{R}^2$ be a stationary process with mean μ and an isotropic exponential covariance function with parameters $\tau^2 > 0$, $\sigma^2 > 0$ and $\phi > 0$. Suppose we observe data at two locations a distance one unit apart. Calculate the BLUP at location \mathbf{s}_0 halfway between the two observed locations.

QUESTION FOUR - 20 MARKS

(a) Suppose that $\{X(\mathbf{s}): \mathbf{s} \in D\}$ is a weakly stationary process with mean μ_X and covariance function $C_X(.)$ and $\{Y(\mathbf{s}): \mathbf{s} \in D\}$ is a second weakly stationary process with mean μ_Y and covariance function $C_Y(.)$. Further let $Cov(X(\mathbf{s}), Y(\mathbf{s} + \mathbf{h})) = \omega$. Then consider

$$Z(\mathbf{s}) = \frac{1}{2}(X(\mathbf{s}) + Y(\mathbf{s})).$$

(i) Derive the mean and covariance functions and determine if Z(s) is weakly stationary. [5 mks]

- (ii) Calculate the covariance function and semi-variogram of Z(s) if both (X(s), Y(s)) have mean zero and exponential covariance functions with common parameters (σ^2, τ^2, ϕ) . What covariance model is this? [5 mks]
- (b) Consider a spatial domain with 4 regions ordered as $[A \mid B \mid C \mid D]$ with data values Z(A) = 1, Z(B) = 2, Z(C) = 3 and Z(D) = 4. Then consider the following two neighbourhood matrices:

$$\mathbf{W}_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \quad \mathbf{W}_2 = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Compute Moran's I for both neighbourhood matrices, and describe why the estimate using W_1 is larger than the estimate using W_2 . [5 mks]

(c) Consider random variables (Y_1, Y_2) that have the following conditional distributions:

$$Y_1|Y_2 \sim N(\alpha_0 + \alpha_1 Y_2, \sigma^2), \quad Y_2|Y_1 \sim N(\beta_0 + \beta_1 Y_1^3, \sigma^2).$$

Using the fact that $\mathbb{E}(X) = \mathbb{E}_Y(\mathbb{E}_X(X|Y))$, calculate $\mathbb{E}(Y_1)$ and $\mathbb{E}(Y_2)$ and define the conditions that must hold for these conditional distributions to be complete with each other. [5 mks]

QUESTION FIVE - 20 MARKS

(a) For a domain $D \subset \mathbb{R}^2$, suppose X is an inhomogeneous Poisson process with first order intensity function $\lambda_X(\mathbf{s})$, that is independent of Y, an inhomogeneous Poisson process with intensity function $\lambda_Y(\mathbf{s})$. The superposition of X and Y is defined to be

$$Z = X \cup Y$$

the set of all points contained in X or Y.

- (i) Show that for any $s \in D$ $\lambda_Z(s) = \lambda_X(s) + \lambda_Y(s)$. [5 mks]
- (ii) Show that Z is an inhomogeneous Poisson Process with intensity $\lambda_Z(s)$. [5 mks]
- (b) For a domain $D \subset \mathbb{R}^2$, let Z denote a homogeneous Poisson process with first order intensity function λ .
 - (i) Write down the properties that characterize this Poisson process. [4 mks]
 - (ii) Is Z a stationary and isotropic spatial point process? Explain your reasoning.[3 mks]
 - (iii) Derive Ripley's K function for Z. [3 mks]