

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

MAIN CAMPUS

UNIVERSITY EXAMINATIONS 2017/2018 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATION

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN DISASTER PREPAREDNESS AND ENVIRONMENTAL TECHNOLOGY

&

BACHELOR OF SCIENCE IN DISASTER MITIGATION AND SUSTAINABLE DEVELOPMENT

COURSE CODE: DPE 309

COURSE TITLE: SIMULATION & MODELING IN DISASTER PREPAREDNESS

DATE: 17/4/2023

TIME: 3-5 PM

INSTRUCTIONS TO CANDIDATES

This paper contains four (4) questions
Question one (1) is compulsory {total = 30 Marks}
Attempt any other two (2) {total = 40 Marks} from the remaining questions
Be brief and to the point

TIME: 2 Hours

MMUST observes ZERO tolerance to examination cheating

This Paper Consists of 2 Printed Pages. Please Turn Over.

SECTION I: COMPULSORY {30 MARKS}

Question ONE

- a) What is the significance of building mathematical models in the context of disaster preparedness? (10 Marks)
- b) Describe the primary requirement of any simulation model (10 Marks)
- c) Discuss the role of 'simple linear functions and equations' in disaster preparedness (10 Marks)

SECTION II: ATTEMPT ANY OTHER TWO (2) QUESTIONS {40 MARKS}

Question TWO

- a) How is aerial rainfall obtained using the Arithmetic Mean method? (10 Marks)
- b) Using relevant examples, describe the following;
 - i. Physical models (5 Marks)
 - ii. Abstract models (5 Marks)

Question THREE

The measured streamflow datasets (Q_0) for ten days were obtained from the Water Resources Management Authority in Kenya. A simulation exercise was carried out and the resultant streamflow (Q_s) is as tabulated below.

Table 1 Observed streamflow ($Q_o[m^3/s]$) and simulated streamflow ($Q_s[m^3/s]$) datasets

Day	Observed streamflow (Q ₀ [m ³ /s])	Simulated streamflow (Q _s [m ³ /s])
1 st	115	111
2 nd	124	129
3 rd	204	205
4 th	233	235
5 th	212	220
6 th	220	224
7^{th}	195	183
8 th	154	155
9 th	123	132
10^{th}	112	115

Using the data on Table 1, compute the following;

- a) The Efficiency Index (EI) (10 Marks)
- b) The Root Mean Square Error (RMSE) (10 Marks)

Question FOUR

- a) Explain the key factors that may contribute to a model calibration inaccuracy (10 Marks)
- b) What do you understand by the Index of Volumetric Fit, and what is its role in modeling and simulation exercise? (10 Marks)