

(University of Choice)

MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY REGULAR EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER (MAIN CAMPUS)

FOR THE DEGREE

OF

MASTER OF SCIENCE (PURE MATHEMATICS)

COURSE CODE:

MAT 813E

COURSE TITLE:

OPERATOR THEORY I

DATE:

Wednesday 26th April 2023

TIME:

2.00 pm - 5.00 pm

INSTRUCTIONS:

Answer any THREE questions

QUESTION ONE (20 MARKS)

a) Let X be a finite dimensional normed linear space and T be a bounded linear operator on X. Show that the spectrum of T consists only of eigenvalues of T i.e. $\sigma(T) = P\sigma(T)$.

(4 marks)

b) Let X be a Banach space and T be a bounded linear operator in X. Show that the resolvent function $R(T): \rho(T) \to B(X)$ is analytic and that the resolvent set $\rho(T)$ is open in \mathbb{C} .

(6 marks)

c) Let X be a Banach space and p be a polynomial with complex coefficients. Let $T \in B(X)$. Show that $\sigma(p(T)) = p(\sigma(T))$ where $p(\sigma(T)) = \{p(\lambda) : \lambda \in \sigma(T)\}$.

(6 marks)

d) Let X be a complex Banach space and $T \in B(X)$ which is invertible. Show that $\sigma(T^{-1}) = {\sigma(T)}^{-1}$ where ${\sigma(T)}^{-1} = {\lambda^{-1} : \lambda \in \sigma(T)}$.

(4 marks)

QUESTION TWO (20 MARKS)

a) Let H be a complex Hilbert space and $T \in B(H)$. Show that $\lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$ exists and equals the spectral radius of T i.e. r(T).

(9 marks)

- b) Let H be a Hilbert space and $T \in B(H)$. Show that the following statements are equivalent.
 - i. There is a $\lambda \in \Pi(T)$ such that $|\lambda| = ||T||$.

ii. $||T|| = Sup\{|\langle Tx, x \rangle| : x \in H \text{ and } ||x|| = 1\}.$

(7 marks)

c) Let H be Hilbert space and $T \in B(H)$ be normal. Show that the approximate point spectrum of T equals the spectrum of T i.e. $\Pi(T) = \sigma(T)$.

(4 marks)

QUESTION THREE (20 MARKS)

a) Let H be a Hilbert space and $T \in B(H)$ be normal. Show that the spectral radius of T equals the norm of T i.e. r(T) = ||T||.

(6marks)

b) Let X be a complex Banach space and $T \in B(X)$. Show that there is a $\lambda \in \sigma(T)$ such that $|\lambda| = r(T)$. (Note that when X is a complex Banach space, then $\sigma(T) \neq \emptyset$).

(4 marks)

c) Let H be a Hilbert space and $T \in B(H)$ be normal. Show that the residual spectrum of T is void i.e. $R\sigma(T) = \phi$. (4 marks)

d) Let H be a Hilbert space and $T \in B(H)$. Show that a closed linear subspace M of H is T-invariant if and only if M^{\perp} is T^* -invariant.

(3 marks)

e) Let H be a Hilbert space and M be a closed linear subspace of H. Let $T \in B(H)$. Show that M is T-invariant if and only if PTP = TP where P is orthogonal projector on H onto M.

(3 marks)

QUESTION FOUR (20 MARKS)

- a) Let H be a Hilbert space and $T \in B(H)$. Let M be a closed linear subspace of H and P is orthogonal projector on H onto M. Show that the following statements are equivalent
 - i. M reduces T.
 - ii. M reduces T^* .
 - iii. $P \leftrightarrow T$.
 - iv. $P \leftrightarrow T^*$.
 - v. M^{\perp} reduces T.
 - vi. M^{\perp} reduces T^* .

(7 marks)

b) Let H be a Hilbert space and $T \in B(H)$ be positive. Show that T is self-adjoint but the converse need not be true.

(5 marks)

c) Let H be a Hilbert space and P, Q be orthoprojectors on H. Show that PQ is an orthoprojector if and only if $P \leftrightarrow Q$, also show that in this case $\Re_{PQ} = M \cap N$ where M and N are the closed linear subspaces of H onto which P and Q project.

(5 marks)

d) Let $T,S \in B(X)$ and $\{T_{\alpha}: \alpha \in \Lambda\}$ be a summable family of elements of B(X) such that $\sum_{\alpha \in \Lambda} T_{\alpha} = T$. Show that $\{ST_{\alpha}: \alpha \in \Lambda\}$ and $\{T_{\alpha}S: \alpha \in \Lambda\}$ are summable to ST and TS respectively. (3 marks)

QUESTION FIVE (20 MARKS)

a) Let H be a Hilbert space and $T \in B(H)$ be positive. Show that

i. $|\langle Tx, y \rangle|^2 \le \langle Tx, x \rangle \langle Ty, y \rangle$ for all $x, y \in H$.

ii. $||Tx||^2 \le ||T||\langle Tx, x \rangle|$ for all $x \in H$.

(5 marks)

b) If $S \ge 0, T \ge 0$ and $S \leftrightarrow T$, show that

i. $ST \ge 0$

ii. $\sqrt{ST} = \sqrt{S}\sqrt{T}$.

(4 marks)

c) Let H, K be Hilbert spaces. A linear operator $U \in B(H,K)$ is a partial isometry if and only if it is isometric on the orthogonal complement of its null space η_U .

(5 marks)

where U is unitary and $S \ge 0$. Moreover-invertible, show that the decomposition	
	(6 marks)
GOOD LUCK	

d) Let H be a Hilbert space and $T \in B(H)$ be normal. Show that T has a polar