

(University of Choice) MASINDE MULIRO UNIVERSITY OF SCIENCE AND TECHNOLOGY (MMUST)

UNIVERSITY REGULAR EXAMINATIONS 2022/2023 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER REGULAR EXAMINATIONS FOR THE MASTERS OF SCIENCE (STATISTICS)

COURSE CODE:

STA 806

COURSE TITLE:

THEORY OF LINEAR MODELS

DATE:

27/04/2023

TIME: 8A.M-11A.M

INSTRUCTIONS TO CANDIDATES

• Answer any THREE questions out of the five questions given

Time: 3 hours

QUESTION ONE (20 MKS)

a. Show that if $E(y) = X\beta$ and $Cov(y) = \sigma^2 I$ the Least squares estimators β_j , j = 0,1,...,k have minimum variance among all linear unbiased estimators.

(6 marks)

b. For the data given below, obtain ANOVA table and test the hypothesis that;

$$H_0: \beta_1 = \beta_2 = 0$$
 versus

$$H_1$$
: at least one of the βj 's $\neq 0, i = 1, 2$

Use
$$\alpha = 0.05$$

Price in thousands of dollars (y)	Age in years (x ₁)	Square footage in thousands of square feet (x ₂)
65	9	10
70	9	8
80	8	8 .
90	9	8
100	9	7. 11. 12. 12. 12. 12. 12. 12. 12. 12. 12

(14 marks)

QUESTION TWO (20 MKS)

- a. An important practical feature of Generalized linear models is that they can all be fit to data using the same algorithm, a form of iteratively re-weighted least squares. Describe this algorithm. (11 marks)
- b. A study used logistic regression to determine characteristics associated with Y= whether a cancer patient achieved remission (1=yes). The most important explanatory variable was a labeling index (LI) that measures proliferative activity of cells after a patient receives an injection of tritiated thymidine. It represents the percentage of cells after a patient receives an injection of tritiated thymidine. It represents the percentage of cells that are "Labeled". Table (1) shows the data while Table (2) presents R glm results for P(Y = 1/X = x).

Table (1)

14010 (1)																				
LI	8	8	18	28	10	10	20	20	20	32	12	12	12	22	22	34	14	14	14	24
Remission	0	0	1	1	0	0	1	1	1	0	0	0	0	1	1	1, 1	0	0	0	0

Table (2)

	Estimate	Std. Error	z-value	Pr(> z)
(Intercept)	-4.2266	1.8551	-2.28	0.0227
LI	0.2111	0.0975	2.16	0.0304

i. Write down the fitted model

(2 marks)

ii. Is LI significant in explaining remission at 5% level of significance?

(2 marks)

iii. Interpret the effect of LI on the odds of remission.

(2 marks)

iv. Determine $\pi = P(Y = 1/X = 26)$

(3 marks)

QUESTION THREE (20 MKS)

a. A study is conducted to estimate the demand for housing based on current interest rate and the rate of unemployment. The data is given as follows;

Units sold	65	59	80	90	100	105
Interest rate in (%)	9.0	9.3	8.9	9.1	9.0	8.7
Unemployment rate at (%)	10	8	8.2	7.7	7.1	7.2

- 1.) Fit multiple regression model of the form $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ to the above data. (7 marks)
- 2.) Test for β_0 , β_1 and β_2

(7 marks)

b. State and explain the components of a generalized linear model

(6 marks)

QUESTION FOUR (20 MKS)

- a. Define Ridge estimator. Hence, show that in the orthonormal case, a ridge estimator is proportional to the least square estimator. (7 marks)
- b. Determine the expectation and variance of a ridge estimator for β hence state under what condition the ridge estimator is unbiased for β (13 marks)

QUESTION FIVE (20 MKS)

a. What is an exponential family?

(3 marks)

- b. Show that $f(y_i) = \frac{e^{-\lambda i} \lambda_i^{y_i}}{y_i!}$ belongs to the exponential family. (6 marks)
- c. Using the data below, fit the non linear regression model and predict the number of bacteria when dose is 16.

Dose	1	2	3 11 12	4	5	6	7	8
Bacteria	35500	21100	19700	16600	14200	10600	10400	6000

Dose	9	10	11	12	13	14	15
Bacteria	5600	3800	3600	3200	2100	1900	1500

(11 marks)